簡易檢索 / 詳目顯示

研究生: 李健祥
Li, Chien Hsiang
論文名稱: 單層過渡金屬硫屬化物之摻雜與電子元件
Doping Monolayer Transition Metal Dichalcogenides and Electronic Devices
指導教授: 邱博文
Chiu, Po Wen
口試委員: 李奎毅
Lee, Kuei Yi
闕郁倫
Chueh, Yu Lun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 85
中文關鍵詞: 二硒化鎢硒化場效電晶體化學氣相沉積
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過渡金屬二硫族化物(Transition-metal dichalcogenides, TMDs),是由過渡金屬元素與硫族元素所構成,以及單層二維材料可以穩定存在自然界中,再加上元素組合不同而有眾多材料特性(絕緣體、半導體、導體等),是近年來矚目的材料之一。本論文進行WSe2與NbSe2的研究,一開始著重材料的成長部分,從設備的架設到長出單層整面WSe2,與直徑2吋大面積的WSe2,可證明LPCVD系統成長WSe2的方式是能夠量產大面積材料。另一方面我們透過硒化氧化物的方法,去進行WSe2的Nb摻雜,希望提高材料的應用價值。
    元件部分在單層整面WSe2元件的電流最高可達十幾nA/µm,電流開關比可到10^4到10^6,最好的次臨界擺幅有96 mV/dec,相當適合往邏輯電路去作發展,並確定成長於氧化鋁基板的WSe2為P型半導體的材料。另外在硒化氧化物所製成的元件部分,在材料WSe2中有Nb的摻雜,微量摻雜Nb 5%的況,電流與載子濃度最大,電流開關比只有 1.1,而次臨界擺幅的部分為12.77 V/dec,呈現金屬特性。透過不同混合比例,我們提出較佳的摻雜範圍在Nb 0-5%。


    Transition-metal dichalcogenides is constituted by transition metal and chalcogenide elements. The two dimensional monolayer material is able to be stable in nature. Depending on the selection of the metal, these materials may exhibit insulator, semiconducting, or metallic properties. It attracts much attention in recent years.

    This thesis discusses the growth of WSe2 and NbSe2. Initially, we construct the equipment (i.e. furnace) by self. We will then describe WSe2 monolayer and large-scale of WSe2 which is 5 centimeters in diameter. It proves the LPCVD could deposit large-scale WSe2. On the other hand, we use selenization of transition metal oxide to form Nb-doped WSe2. We hope to upgrade the value in this application.

    In devices, the maximum current of monolayer WSe2 reaches 12 nA/µm and on/off current ratio is 10^4 to 10^6. the best subthreshold swing is up to 96 mV/dec. It is very suitable for logic circuit design. On the other hand , the doping concentration of Nb-doped WSe2 is below 5%. The current and mobility are larger. It only exhibits an on/off current ratio of 1.1 and subthreshold swing of 12.77 V/dec. It appears to be metallic.

    Absrtact............................. I 論文摘要.............................. III 致謝.................................. V 目錄................................. VIII 第一章 緒論............................. 1 1.1 半導體元件的發展與侷限 . . . . . . . 1 1.2 二維材料介紹 . . . . . . . . . . . 4 1.3 論文結構 . . . . . . . . . . . . . 5 第二章 單層過渡金屬硫屬化物............... 7 2.1 單層二硒化鎢與二硒化鈮的結構 . . . . . 7 2.2 單層二硒化鎢與二硒化鈮的電子能帶 . . . 11 2.3 單層二硒化鎢與二硒化鈮的聲子能帶 . . . 13 2.4 檢測單層二硒化鎢的工具 . . . . . . . 14 2.4.1 拉曼光譜 . . . . . . . . . . . . . 14 2.4.2 原子力顯微鏡 . . . . . . . . . . . 16 2.4.3 X 射線光電子能譜 . . . . . . . . . 16 2.4.4 光致螢光光譜 . . . . . . . . . . . 17 第三章 化學氣相沉積..................... 19 3.1 化學氣相沉積原理 . . . . . . . . . 19 3.1.1 薄膜成長 . . . . . . . . . . . . 19 3.1.2 化學氣相沉積反應機制 . . . . . . . 20 3.1.3 化學氣相傳輸沉積反應機制 . . . . . 21 3.2 輸送現象 . . . . . . . . . . . . . 22 3.3 建構實驗設備 . . . . . . . . . . . . 25 第四章 場效電晶體之製作.................. 29 4.1 實驗流程 . . . . . . . . . . . . . . 29 4.2 電子束微影技術 . . . . . . . . . . . 32 4.3 反應式離子蝕刻 . . . . . . . . . . . 34 4.4 金屬接觸選擇 . . . . . . . . . . . . 35 4.5 量測系統 . . . . . . . . . . . . . . 37 第五章 化學氣相沉積成長單層二硒化鎢........ 39 5.1 小尺寸單層二硒化鎢 . . . . . . . . . 39 5.2 大面積單層二硒化鎢 . . . . . . . . . 45 5.3 二硒化鎢之檢測 . . . . . . . . . . . 50 5.3.1 單層二硒化鎢 . . . . . . . . . . . 50 5.3.2 多層二硒化鎢 . . . . . . . . . . . 52 第六章 過渡金屬硫屬化物之摻雜.............. 55 6.1 過渡金屬氧化物硒化 . . . . . . . . . . 55 6.2 二硒化鎢之鈮摻雜 . . . . . . . . . . . 59 6.2.1 材料製備流程 . . . . . . . . . . . . 60 6.2.2 參數測試 . . . . . . . . . . . . . 62 6.2.3 拉曼光譜 . . . . . . . . . . . . . 63 6.2.4 X 射線光電子能譜 . . . . . . . . . . 64 第七章 場效電晶體之量測與分析.............. 67 7.1 單層二硒化鎢金屬接觸分析 . . . . . . . 67 7.2 鈮摻雜二硒化鎢金屬接觸分析 . . . . . . 71 第八章 結論與展望......................... 75 8.1 實驗總結 . . . . . . . . . . . . . . 75 8.2 未來展望 . . . . . . . . . . . . . . 76 參考文獻................................. 79

    [1] J. Bardeen and W. H. Brattain, “The transistor, a semiconductor triode,” Phys. Rev., vol. 74, no. 2, pp. 230–231, 1948.
    [2] “https:// technologicallyinsane.wordpress.com/ 2013/04/05/ the-post-silicon-era/,” Semiconductor Industry.
    [3] “http:// www.dailytech.com/ intels +broadwellbase +core+iseries +socs +finally +hits +the+market/article37051.htm,” Fin field effect transistor.
    [4] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, , I. Grigorieva,and A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004.
    [5] D. Pacile, J. Meyer, C. O. Girit, and A. Zettl, “The two dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes,” Appl. Phys. Lett., vol. 92, no. 13, pp. 133107–133109, 2008.
    [6] L. Mattheiss, “Band structures of transition-metal dichalcogenide layer compounds,” Phys. Rev. B, vol. 8, no. 8, pp. 3719–3740, 1973.
    [7] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two dimensional transition metal dichalcogenides,” ACS Nano, vol. 8, no. 2, pp. 1102–1120, 2014.
    [8] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem., vol. 5, no. 4, pp. 263–275, 2013.
    [9] A. Kumar and P. Ahluwalia, “Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M= Mo, W; X= S, Se, Te) from ab-initio theory: new direct band gap semiconductors,” Eur. Phys. J. B, vol. 85, no. 6, pp. 1–7, 2012.
    [10] R. Lieth, Preparation and crystal growth of materials with layered structures, vol. 1. Springer Science & Business Media, 1977.
    [11] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotech., vol. 7, no. 11, pp. 699–712, 2012.
    [12] C. Ataca, H. Sahin, and S. Ciraci, “Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure,” J. Phys. Chem. C, vol. 116, no. 16, pp. 8983–8999, 2012.
    [13] Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, “First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M= Mo, Nb, W, Ta; X= S, Se, Te) monolayers,” Physica B: Condensed Matter, vol. 406, no. 11, pp. 2254–2260, 2011.
    [14] L. Mattheiss, “Energy Bands for 2H-NbSe2 and 2H-MoS2,” Phys. Rev. Lett., vol. 30, no. 17, pp. 784–787, 1973.
    [15] K. Xu, Z. Wang, X. Du, M. Safdar, C. Jiang, and J. He, “Atomic-layer triangular WSe2 sheets: synthesis and layer-dependent photoluminescence property,” Nanotechnology, vol. 24, no. 46, pp. 465705–465712, 2013.
    [16] X. Luo, Y. Zhao, J. Zhang, M. Toh, C. Kloc, Q. Xiong, and S. Y. Quek, “Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe2,” Phys. Rev. B, vol. 88, no. 19, pp. 195313–195319, 2013.
    [17] “https://en.wikipedia.org/wiki/raman_spectroscopy,” Raman spectroscopy.
    [18] “http://bwtek.com/raman-theory-of-raman-scattering/,” Theory of Raman Scattering.
    [19] H. Terrones, E. Del Corro, S. Feng, J. Poumirol, D. Rhodes, D. Smirnov, N. Pradhan, Z. Lin, M. Nguyen, A. Elias, et al., “New first order Raman-active modes in few layered transition metal dichalcogenides,” Sci. Rep., vol. 4, no. 4215, pp. 1–9, 2014.
    [20] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. Zahn, et al., “Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2,” Opt. Express, vol. 21, no. 4, pp. 4908–4916, 2013.
    [21] H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. Peeters, “Anomalous Raman spectra and thickness-dependent electronic properties of WSe2,” Phys. Rev. B, vol. 87, no. 16, pp. 165409–165414, 2013.
    [22] W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono-and few-layer sheets of WS2 and WSe2,” Nanoscale, vol. 5, no. 20, pp. 9677–9683, 2013.
    [23] “https://en.wikipedia.org/wiki/atomic_force_microscopy,” Atomic force microscopy.
    [24] “http://virtual.itg.uiuc.edu/training/afm_tutorial/,” Scanning Probe Microscopy.
    [25] “https://en.wikipedia.org/wiki/x ray_photoelectron_spectroscopy,” X-ray photoelectron spectroscopy.
    [26] “http://xpssimplified.com/whatisxps.php,” What is XPS.
    [27] “https://en.wikipedia.org/wiki/photoluminescence,” Photoluminescence.
    [28] “http:// www.ccut.edu.tw/ teachers/ wentse/ downloads/ 1031009-1.pdf,” Photoluminescence principle.
    [29] J. D. Plummer, Silicon VLSI technology: fundamentals, practice, and modeling. PearsonEducation India, 2000.
    [30] K. Gloos, P. Koppinen, and J. Pekola, “Properties of native ultrathin aluminium oxide tunnel barriers,” Journal of Physics: Condensed Matter, vol. 15, no. 10, p. 1733, 2003.
    [31] E. H. Rhoderick and R. Williams, Metal semiconductor contacts. Clarendon Press Oxford, 1988.
    [32] C. Gong, L. Colombo, R. M. Wallace, and K. Cho, “The unusual mechanism of partial Fermi level pinning at metal–MoS2 interfaces,” Nano letters, vol. 14, no. 4, pp. 1714–1720, 2014.
    [33] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, “Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors,” Phys. Rev. X, vol. 4, no. 3, pp. 031005–031018, 2014.
    [34] J. Suh, T.-E. Park, D.-Y. Lin, D. Fu, J. Park, H. J. Jung, Y. Chen, C. Ko, C. Jang, Y. Sun, et al., “Doping against the native propensity of MoS2: degenerate hole doping by cation substitution,” Nano Lett., vol. 14, no. 12, pp. 6976–6982, 2014.
    [35] J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano, vol. 8, no. 1, pp. 923–930, 2013.
    [36] J. C. Shaw, H. Zhou, Y. Chen, N. O. Weiss, Y. Liu, Y. Huang, and X. Duan, “Chemical vapor deposition growth of monolayer MoSe2 nanosheets,” Nano Res., vol. 7, no. 4, pp. 511–517, 2014.
    [37] Y.-H. Chang, W. Zhang, Y. Zhu, Y. Han, J. Pu, J.-K. Chang, W.-T. Hsu, J.-K. Huang, C.-L. Hsu, M.-H. Chiu, et al., “Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection,” ACS Nano, vol. 8, no. 8, pp. 8582–8590, 2014.
    [38] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, “High-performance single layered WSe2 p-FETs with chemically doped contacts,” Nano Lett., vol. 12, no. 7, pp. 3788–3792, 2012.
    [39] W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, “Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors,” Nano Lett., vol. 13, no. 5, pp. 1983–1990, 2013.
    [40] W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano, vol. 7, no. 1, pp. 791–797, 2012.
    [41] K. Banerjee, W. Liu, and J. Kang, “High-Performance Field-Effect-Transistors On Monolayer-WSe2,” ECST., vol. 58, no. 31, pp. 2182–2182, 2013.
    [42] C.-H. Lee, G.-H. Lee, A. M. van Der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, et al., “Atomically thin p–n junctions with van der Waals het-erointerfaces,” Nat. Nanotech., vol. 9, no. 150, pp. 676–681, 2014.
    [43] T. Tsirlina, V. Lyakhovitskaya, S. Fiechter, and R. Tenne, “Study on preparation, growth mechanism, and optoelectronic properties of highly oriented WSe2 thin films,” J. Mater. Res., vol. 15, no. 12, pp. 2636–2646, 2000.
    [44] T. Tsirlina, S. Cohen, H. Cohen, L. Sapir, M. Peisach, R. Tenne, A. Matthaeus, S. Tiefen- bacher, W. Jaegermann, E. Ponomarev, et al., “Growth of crystalline WSe2 and WS2 films on amorphous substrate by reactive (Van der Waals) rheotaxy,” Sol. Energy Mater. Sol. Cells, vol. 44, no. 4, pp. 457–470, 1996.
    [45] M. Kadleıková, J. Breza, and M. Veselỳ, “Raman spectra of synthetic sapphire,” Microelectronics journal, vol. 32, no. 12, pp. 955–958, 2001.
    [46] “https://en.wikipedia.org/wiki/niobium_pentoxide,” Niobium pentoxide.
    [47] C. Wang and J. Chen, “Raman spectrum of metallic layered compound NbSe2,” Solid State Commun., vol. 14, no. 11, pp. 1145–1148, 1974.
    [48] A. Leblanc-Soreau, P. Molinié, and E. Faulques, “Raman spectra of niobium chalcogenide superconductors: NbSe2 and SnNb5Se9,” Physica C: Superconductivity, vol. 282, pp. 1937–1938, 1997.
    [49] M. R. Laskar, D. N. Nath, L. Ma, E. W. Lee II, C. H. Lee, T. Kent, Z. Yang, R. Mishra, M. A. Roldan, J.-C. Idrobo, et al., “P-type doping of MoS2 thin films using Nb,” Appl. Phys. Lett., vol. 104, no. 9, pp. 092104–092108, 2014.
    [50] “https://en.wikipedia.org/wiki/sintering,” Sintering.
    [51] D. Dumcenco, K. Chen, Y. Wang, Y. Huang, and K. Tiong, “Raman study of 2H-Mo1−xWxS2 layered mixed crystals,” J. Alloy. Compd., vol. 506, no. 2, pp. 940–943, 2010.
    [52] W. Zhang, X. Li, T. Jiang, J. Song, Y. Lin, L. Zhu, and X. Xu, “CVD synthesis of Mo(1−x)WxS2 and MoS2(1−x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide,” Nanoscale, vol. 7, no. 32, pp. 13554–13560, 2015.
    [53] H. Liu, K. A. Antwi, S. Chua, and D. Chi, “Vapor-phase growth and characterization of Mo1−xWxS2 (0 ≤ x ≤ 1) atomic layers on 2-inch sapphire substrates,” Nanoscale, vol. 6, no. 1, pp. 624–629, 2014.
    [54] N. D. Boscher, C. J. Carmalt, and I. P. Parkin, “Atmospheric pressure chemical vapour deposition of NbSe2 thin films on glass,” Eur. J. Inorg. Chem., vol. 2006, no. 6, pp. 1255–1259, 2006.
    [55] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotech., vol. 6, no. 3, pp. 147–150, 2011.
    [56] S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller, “High performance multilayer MoS2 transistors with scandium contacts,” Nano Lett., vol. 13, no. 1, pp. 100–105, 2012.
    [57] A. Rai, A. Valsaraj, H. C. Movva, A. Roy, R. Ghosh, S. Sonde, S. Kang, J. Chang, T. Trivedi, R. Dey, et al., “Air stable doping and intrinsic mobility enhancement in monolayer molybdenum disulfide by amorphous titanium suboxide encapsulation,” Nano letters, vol. 15, no. 7, pp. 4329–4336, 2015.
    [58] D.-H. Kang, J. Shim, S. K. Jang, J. Jeon, M. H. Jeon, G. Y. Yeom, W.-S. Jung, Y. H. Jang, S. Lee, and J.-H. Park, “Controllable nondegenerate p-Type Doping of Tungsten Diselenide by Octadecyltrichlorosilane,” ACS Nano, vol. 9, no. 2, pp. 1099–1107, 2015.
    [59] D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, S. Ye, and S. Knights, “High oxygen- reduction activity and durability of nitrogen-doped graphene,” Energy & Environmental Science, vol. 4, no. 3, pp. 760–764, 2011.
    [60] H. Fang, M. Tosun, G. Seol, T. C. Chang, K. Takei, J. Guo, and A. Javey, “Degenerate n-doping of few-layer transition metal dichalcogenides by potassium,” Nano Lett., vol. 13, no. 5, pp. 1991–1995, 2013.
    [61] C.-H. Chen, C.-L. Wu, J. Pu, M.-H. Chiu, P. Kumar, T. Takenobu, and L.-J. Li, “Hole mo- bility enhancement and p-doping in monolayer WSe2 by gold decoration,” 2D Materials, vol. 1, no. 3, pp. 034001–034012, 2014.
    [62] S. L. Benjamin, Y.-P. Chang, C. Gurnani, A. L. Hector, M. Huggon, W. Levason, and G. Reid, “Niobium (v) and tantalum (v) halide chalcogenoether complexes–towards single source CVD precursors for ME2 thin films,” Dalton Trans., vol. 43, no. 44, pp. 16640– 16648, 2014.
    [63] H. Liu, N. Han, and J. Zhao, “Atomistic insight into the oxidation of monolayer transition metal dichalcogenides: from structures to electronic properties,” RSC Adv., vol. 5, no. 23, pp. 17572–17581, 2015.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE