研究生: |
李泗芃 |
---|---|
論文名稱: |
探討嗜熱菌 Meiothermus taiwanensis ATCC BAA-400 之半乳糖激酶酵素動力學及應用於合成 Pk 抗原類似物 Kinetics Studies with Galactokinase from Meiothermus taiwanensis ATCC BAA-400 and Application of Galactokinase to Synthesize Pk-antigen analoge |
指導教授: | 林俊成 |
口試委員: |
吳東昆
林伯樵 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 半乳糖激酶 、半乳糖轉移酶 、Pk 抗原 |
外文關鍵詞: | Galactokinase, Galactosyltransferase, Pk antigen |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,選殖、表達台灣本土嗜熱菌 Meiothermus taiwanensis ATCC BAA-400 的半乳糖激酶 (galactokinase,GalK) 並以 IMPACTTM-CN系統純化可得 16 mg/L 的半乳糖激酶重組蛋白。半乳糖激酶重組蛋白最佳化反應溫度為 75 oC、最佳化反應酸鹼值為 9.0。半乳糖激酶重組蛋白對半乳糖的kcat/Km 值為 168.47 s-1mM-1,於 55 oC 和 75 oC 分別測得的比活性為 240 U/mg 和 388 U/mg。半乳糖激酶與實驗室已有的葡萄糖-1-磷酸胸苷轉移酶 (glucose-1-phosphate thymidylyltransferase,RmlA)結合,可進行一鍋化反應製備尿苷二磷酸半乳糖 (UDP-Gal)。
分別由 Neisseria meningitides 與 Haemophilus influenzae Rd KW20 選殖兩種來源不同的 α-1,4-半乳糖轉移酶。C-端截斷 (truncated) 19 個胺基酸的N. meningitides α-1,4-半乳糖轉移酶(LgtC-19)與N-端截斷 38 個胺基酸的 H. influenzae Rd KW20 α-1,4-半乳糖轉移酶(N-cut-38-Hi0258),皆可運用於階段式一鍋化反應合成 Pk 抗原類似物 (α-D-Gal-(1-4)-β-D-Gal-(1-4)-β-D-Glc -OC6H12N3)。
In this study, the recombinant galactokinases (GalK) from Meiothermus taiwanensis ATCC BAA-400 was cloned, over-expressed, and purified by IMPACTTM-CN system with a yield of 16 mg/L cell cultures. The optimal reaction conditions for recombinant GalK are at 75 °C, and pH at 9.0. The kcat/Km value of recombinant GalK toward galactose is 168.47 s−1 mM−1 and specific unit at 55 °C and 75 °C are 240 U/mg and 388 U/mg, respectively. The GalK was combined with glucose-1- phosphate thymidylyltransferase (RmlA) to synthesize uridine 5’-diphosphate galactose (UDP-Gal) in one-pot reaction.
In addition, the genes of α-1,4-galactosyltransferases (GalTs) from Neisseria meningitides (19 residues at C-terminal deleted; LgtC-19) and Haemophilus influenzae Rd KW2 (38 residues of N-terminal was deleted;N-cut-38-Hi0258) were cloned and the corresponding proteins were over-expressed. Both α-1,4-GalTs were respectively combined with GalK and RmlA to synthesize Pk antigen derivatives (α-D-Gal-(1-4)-β-D -Gal-(1-4)-β-D-Glc-OC6H12N3) in sequential addition one-pot reaction manner.
1. Koeller, K. M.; Wong, C. H., Enzymes for chemical synthesis. Nature 2001, 409, 232-240.
2. Drauz, K.; Waldmann, H., Enzyme catalysis in organic synthesis: A comprehensive hand book. Wiley-VCH: 2002; Vol. Ⅰ-Ⅲ.
3. Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B., Industrial biocatalysis today and tomorrow. Nature 2001, 409, 258-268.
4. Schoemaker, H. E.; Mink, D.; Wubbolts, M. G., Dispelling the myths--biocatalysis in industrial synthesis. Science 2003, 299, 1694-1697.
5. Varki, A., Nothing in glycobiology makes sense, except in the light of evolution. Cell 2006, 126, 841-845.
6. Ohtsubo, K.; Marth, J. D., Glycosylation in cellular mechanisms of health and disease. Cell 2006, 126, 855-867.
7. Weerapana, E.; Imperiali, B., Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. Glycobiology 2006, 16, 91R-101R.
8. Szymanski, C. M.; Wren, B. W., Protein glycosylation in bacterial mucosal pathogens. Nat. Rev. Microbiol. 2005, 3, 225-237.
9. Weijers, C. A.; Franssen, M. C.; Visser, G. M., Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnol. Adv. 2008, 26, 436-456.
10. Schmaltz, R. M.; Hanson, S. R.; Wong, C. H., Enzymes in the synthesis of glycoconjugates. Chem. Rev. 2011, 111, 4259-4307.
11. Garg, H. G.; Cowman, M. K.; Hales, C. A.; ScienceDirect (Online service), Carbohydrate chemistry, biology and medical applications. Elsevier: Oxford, 2008; pp. xv, 414 p.
12. Chen, X.; Zhang, J.; Kowal, P.; Liu, Z.; Andreana, P. R.; Lu, Y.; Wang, P. G., Transferring a biosynthetic cycle into a productive Escherichia coli strain: large-scale synthesis of galactosides. J. Am. Chem. Soc. 2001, 123, 8866-8867.
13. Zhou, G.; Liu, X.; Su, D.; Li, L.; Xiao, M.; Wang, P. G., Large scale enzymatic synthesis of oligosaccharides and a novel purification process. Bioorg. Med. Chem. Lett. 2011, 21, 311-314.
14. Koizumi, S.; Endo, T.; Tabata, K.; Ozaki, A., Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria. Nat. Biotech. 1998, 16, 847-850.
15. Zhang, J.; Kowal, P.; Chen, X.; Wang, P. G., Large-scale synthesis of globotriose derivatives through recombinant E. coli. Org. Biomol. Chem. 2003, 1, 3048-3053.
16. Zhang, J.; Wu, B.; Zhang, Y.; Kowal, P.; Wang, P. G., Creatine phosphate--creatine kinase in enzymatic synthesis of glycoconjugates. Org. Lett. 2003, 5, 2583-2586.
17. Holden, H. M.; Rayment, I.; Thoden, J. B., Structure and function of enzymes of the Leloir pathway for galactose metabolism. J. Biol. Chem. 2003, 278, 43885-43888.
18. Gulbinsky, J. S.; Cleland, W. W., Kinetic studies of Escherichia coli galactokinase. Biochemistry 1968, 7, 566-575.
19. Sherman, J. R.; Adler, J., Galactokinse from Escherichia coli. J. Biol. Chem. 1963, 238, 873-878.
20. Adams, B. G., Induction of galactokinase in Saccharomyces cerevisiae: kinetics of induction and glucose effects. J. Bacteriol. 1972, 111, 308-315.
21. Schell, M. A.; Wilson, D. B., Purification and properties of galactokinase from Saccharomyces cerevisiae. J. Biol. Chem. 1977, 252, 1162-1166.
22. Choi, J. Y.; Lee, J.-H.; Lee, J. M.; Kim, J. H.; Chang, H. C.; Chung, D. K.; Cho, S. K.; Lee, H. J., Expression of the Galactokinase Gene (galK) from Lactococcus lactis ssp. lactis ATCC7962 in Escherichia coli. J. Microbio. 2002, 156-160.
23. Hutkins, R.; Morris, H. A.; McKay, L. L., Galactokinase activity in Streptococcus thermophilus. Appl. Environ. Microbiol. 1985, 50, 777-780.
24. Ballard, F. J., Kinetic studies with liver galactokinase. Biochem. J. 1966, 101, 70-75.
25. Timson, D. J.; Reece, R. J., Sugar recognition by human galactokinase. BMC Biochem. 2003, 4, 16.
26. Chu, X.; Li, N.; Liu, X.; Li, D., Functional studies of rat galactokinase. J. Biotechnol. 2009, 141, 142-146.
27. Walker, D. G.; Khan, H. H., Some properties of galactokinase in developing rat liver. Biochem. J. 1968, 108, 169-175.
28. Chen, M.; Chen, L. L.; Zou, Y.; Xue, M.; Liang, M.; Jin, L.; Guan, W. Y.; Shen, J.; Wang, W.; Wang, L.; Liu, J.; Wang, P. G., Wide sugar substrate specificity of galactokinase from Streptococcus pneumoniae TIGR4. Carbohydr. Res. 2011, 346, 2421-2425.
29. Zou, Y.; Wang, W.; Cai, L.; Chen, L.; Xue, M.; Zhang, X.; Shen, J.; Chen, M., Substrate specificity of galactokinase from Streptococcus pneumoniae TIGR4 towards galactose, glucose, and their derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 3540-3543.
30. Hoffmeister, D.; Yang, J.; Liu, L.; Thorson, J. S., Creation of the first anomeric D/L-sugar kinase by means of directed evolution. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 13184-13189.
31. Yang, J.; Fu, X.; Liao, J.; Liu, L.; Thorson, J. S., Structure-based engineering of E. coli galactokinase as a first step toward in vivo glycorandomization. Chem. Biol. 2005, 12, 657-664.
32. Alvarado, F., Substrate specificity of Saccharomyces fragilis galactokinase. Biochim. Biophys. Acta 1960, 41, 233-238.
33. Verhees, C. H.; Koot, D. G.; Ettema, T. J.; Dijkema, C.; de Vos, W. M.; van der Oost, J., Biochemical adaptations of two sugar kinases from the hyperthermophilic archaeon Pyrococcus furiosus. Biochem. J. 2002, 366, 121-127.
34. Ballard, F. J., Purification and properties of galactokinase from pig liver. Biochem. J. 1966, 98, 347-352.
35. Li, L.; Liu, Y.; Wang, W.; Cheng, J.; Zhao, W.; Wang, P., A highly efficient galactokinase from Bifidobacterium infantis with broad substrate specificity. Carbohydr. Res. 2012, 355, 35-39.
36. Yang, J.; Fu, X.; Jia, Q.; Shen, J.; Biggins, J. B.; Jiang, J.; Zhao, J.; Schmidt, J. J.; Wang, P. G.; Thorson, J. S., Studies on the substrate specificity of Escherichia coli galactokinase. Org. Lett. 2003, 5, 2223-2226.
37. Yang, J.; Liu, L.; Thorson, J. S., Structure-based enhancement of the first anomeric glucokinase. Chembiochem 2004, 5, 992-996.
38. Hoffmeister, D.; Thorson, J. S., Mechanistic implications of Escherichia coli galactokinase structure-based engineering. Chembiochem 2004, 5, 989-992.
39. Barton, W. A.; Lesniak, J.; Biggins, J. B.; Jeffrey, P. D.; Jiang, J.; Rajashankar, K. R.; Thorson, J. S.; Nikolov, D. B., Structure, mechanism and engineering of a nucleotidylyltransferase as a first step toward glycorandomization. Nat. Struct. Biol. 2001, 8, 545-551.
40. Graninger, M.; Kneidinger, B.; Bruno, K.; Scheberl, A.; Messner, P., Homologs of the Rml enzymes from Salmonella enterica are responsible for dTDP-beta-L-rhamnose biosynthesis in the gram-positive thermophile Aneurinibacillus thermoaerophilus DSM 10155. Appl. Environ. Microbiol. 2002, 68, 3708-3715.
41. Moretti, R.; Thorson, J. S., Enhancing the latent nucleotide triphosphate flexibility of the glucose-1-phosphate thymidylyltransferase RmlA. J. Biol. Chem. 2007, 282, 16942-16947.
42. Timmons, S. C.; Mosher, R. H.; Knowles, S. A.; Jakeman, D. L., Exploiting nucleotidylyltransferases to prepare sugar nucleotides. Org. Lett. 2007, 9, 857-860.
43. Chen, X.; Zhang, W.; Wang, J. Q.; Fang, J. W.; Wang, P. G., Production of alpha-galactosyl epitopes via combined use of two recombinant whole cells harboring UDP-galactose 4-epimerase and alpha-1,3-galactosyltransferase. Biotechnol. Prog. 2000, 16, 595-599.
44. Chen, X.; Liu, Z.; Wang, J. Q.; Fang, J. W.; Fan, H. N.; Wang, P. G., Changing the donor cofactor bovine alpha 1,3-galactosyltransferase by fusion with UDP-galactose 4-epimerase - More efficient biocatalysis for synthesis of alpha-Gal epitopes. J. Biol. Chem. 2000, 275, 31594-31600.
45. Blixt, O.; Vasiliu, D.; Allin, K.; Jacobsen, N.; Warnock, D.; Razi, N.; Paulson, J. C.; Bernatchez, S.; Gilbert, M.; Wakarchuk, W., Chemoenzymatic synthesis of 2-azidoethyl-ganglio-oligosaccharides GD3, GT3, GM2, GD2, GT2, GM1, and GD1a. Carbohydr. Res. 2005, 340, 1963-1972.
46. Bernatchez, S.; Gilbert, M.; Blanchard, M. C.; Karwaski, M. F.; Li, J.; DeFrees, S.; Wakarchuk, W. W., Variants of the beta 1,3-galactosyltransferase CgtB from the bacterium Campylobacter jejuni have distinct acceptor specificities. Glycobiology 2007, 17, 1333-1343.
47. Yi, W.; Perali, R. S.; Eguchi, H.; Motari, E.; Woodward, R.; Wang, P. G., Characterization of a bacterial beta-1,3-galactosyltransferase with application in the synthesis of tumor-associated T-antigen mimics. Biochemistry 2008, 47, 1241-1248.
48. Zhou, G. Y.; Liu, X. W.; Su, D. R.; Li, L.; Xiao, M.; Wang, P. G., Large scale enzymatic synthesis of oligosaccharides and a novel purification process. Bioorg. Med. Chem. Lett. 2011, 21, 311-314.
49. Liu, Z.; Lu, Y.; Zhang, J.; Pardee, K.; Wang, P. G., P1 Trisaccharide (Galalpha1,4Galbeta1,4GlcNAc) synthesis by enzyme glycosylation reactions using recombinant Escherichia coli. Appl. Environ. Microbiol. 2003, 69, 2110-2115.
50. Wakarchuk, W. W.; Cunningham, A.; Watson, D. C.; Young, N. M., Role of paired basic residues in the expression of active recombinant galactosyltransferases from the bacterial pathogen Neisseria meningitidis. Protein Eng. 1998, 11, 295-302.
51. Zhang, J. B.; Kowal, P.; Fang, J. W.; Andreana, P.; Wang, P. G., Efficient chemoenzymatic synthesis of globotriose and its derivatives with a recombinant alpha-(1 -> 4)-galactosyltransferase. Carbohydr. Res. 2002, 337, 969-976.
52. Deng, C. H.; Chen, R. R., A pH-sensitive assay for galactosyltransferase. Anal. Biochem. 2004, 330, 219-226.
53. Lau, K.; Thon, V.; Yu, H.; Ding, L.; Chen, Y.; Muthana, M. M.; Wong, D.; Huang, R.; Chen, X., Highly efficient chemoenzymatic synthesis of beta 1-4-linked galactosides with promiscuous bacterial beta 1-4-galactosyltransferases. Chem. Commun. 2010, 46, 6066-6068.
54. Sauerzapfe, B.; Krenek, K.; Schmiedel, J.; Wakarchuk, W. W.; Pelantova, H.; Kren, V.; Elling, L., Chemo-enzymatic synthesis of poly-N-acetyllactosamine (poly-LacNAc) structures and their characterization for CGL2-galectin-mediated binding of ECM glycoproteins to biomaterial surfaces. Glycoconjugate J. 2009, 26, 141-159.
55. Louise, C. B.; Obrig, T. G., Specific interaction of Escherichia coli O157:H7-derived Shiga-like toxin II with human renal endothelial cells. J. Infect. Dis. 1995, 172, 1397-1401.
56. Keusch, G. T.; Jacewicz, M.; Acheson, D. W.; Donohue-Rolfe, A.; Kane, A. V.; McCluer, R. H., Globotriaosylceramide, Gb3, is an alternative functional receptor for Shiga-like toxin 2e. Infect. Immun. 1995, 63, 1138-1141.
57. Lund, N.; Olsson, M. L.; Ramkumar, S.; Sakac, D.; Yahalom, V.; Levene, C.; Hellberg, A.; Ma, X. Z.; Binnington, B.; Jung, D.; Lingwood, C. A.; Branch, D. R., The human P(k) histo-blood group antigen provides protection against HIV-1 infection. Blood 2009, 113, 4980-4991.
58. Chen, M. Y.; Lin, G. H.; Lin, Y. T.; Tsay, S. S., Meiothermus taiwanensis sp. nov., a novel filamentous, thermophilic species isolated in Taiwan. Int. J. Syst. Evol. Microbiol. 2002, 52, 1647-1654.
59. Fleischmann, R. D.; Adams, M. D.; White, O.; Clayton, R. A.; Kirkness, E. F.; Kerlavage, A. R.; Bult, C. J.; Tomb, J. F.; Dougherty, B. A.; Merrick, J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995, 269, 496-512.
60. Hood, D. W.; Cox, A. D.; Wakarchuk, W. W.; Schur, M.; Schweda, E. K.; Walsh, S. L.; Deadman, M. E.; Martin, A.; Moxon, E. R.; Richards, J. C., Genetic basis for expression of the major globotetraose-containing lipopolysaccharide from H. influenzae strain Rd (RM118). Glycobiology 2001, 11, 957-967.
61. Swords, W. E.; Jones, P. A.; Apicella, M. A., The lipooligosaccharides of Haemophilus influenzae: an interesting array of characters (vol 9, pg 131, 2003). J Endotoxin. Res. 2003, 9, 336-336.
62. Moretti, R.; Thorson, J. S., A comparison of sugar indicators enables a universal high-throughput sugar-1-phosphate nucleotidyltransferase assay. Anal. Biochem. 2008, 377, 251-258.
63. Lavine, J. E.; Cantlay, E.; Roberts, C. T., Jr.; Morse, D. E., Purification and properties of galactokinase from Tetrahymena thermophila. Biochim. Biophys. Acta 1982, 717, 76-85.
64. Lee, L. J.; Kinoshita, S.; Kumagai, H.; Tochikura, T., Galactokinase of Bifidobacterium-Bifidum. Agric. Biol. Chem. 1980, 44, 2961-2966.
65. Verhees, C. H.; Koot, D. G. M.; Ettema, T. J. G.; Dijkema, C.; De Vos, W. M.; Van Der Oost, J., Biochemical adaptations of two sugar kinases from the hyperthermophilic archaeon Pyrococcus furiosus. Biochem. J. 2002, 366, 121-127.
66. Chien, W. T.; Liang, C. F.; Yu, C. C.; Lin, J. H.; Wu, H. T.; Lin, C. C., Glucose 1-Phosphate Thymidylyltransferase in the Synthesis of Uridine 5 '-Diphosphate Galactose and its Application in the Synthesis of N-Acetyllactosamine. Adv. Synth. Catal. 2012, 354, 123-132.
67. Kelley, L. A.; Sternberg, M. J. E., Protein structure prediction on the Web: a case study using the Phyre server. Nat. protocols 2009, 4, 363-371.
68. Betz, S. F., Disulfide Bonds and the Stability of Globular-Proteins. Protein Sci. 1993, 2, 1551-1558.