簡易檢索 / 詳目顯示

研究生: 李泗芃
論文名稱: 探討嗜熱菌 Meiothermus taiwanensis ATCC BAA-400 之半乳糖激酶酵素動力學及應用於合成 Pk 抗原類似物
Kinetics Studies with Galactokinase from Meiothermus taiwanensis ATCC BAA-400 and Application of Galactokinase to Synthesize Pk-antigen analoge
指導教授: 林俊成
口試委員: 吳東昆
林伯樵
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 81
中文關鍵詞: 半乳糖激酶半乳糖轉移酶Pk 抗原
外文關鍵詞: Galactokinase, Galactosyltransferase, Pk antigen
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,選殖、表達台灣本土嗜熱菌 Meiothermus taiwanensis ATCC BAA-400 的半乳糖激酶 (galactokinase,GalK) 並以 IMPACTTM-CN系統純化可得 16 mg/L 的半乳糖激酶重組蛋白。半乳糖激酶重組蛋白最佳化反應溫度為 75 oC、最佳化反應酸鹼值為 9.0。半乳糖激酶重組蛋白對半乳糖的kcat/Km 值為 168.47 s-1mM-1,於 55 oC 和 75 oC 分別測得的比活性為 240 U/mg 和 388 U/mg。半乳糖激酶與實驗室已有的葡萄糖-1-磷酸胸苷轉移酶 (glucose-1-phosphate thymidylyltransferase,RmlA)結合,可進行一鍋化反應製備尿苷二磷酸半乳糖 (UDP-Gal)。
    分別由 Neisseria meningitides 與 Haemophilus influenzae Rd KW20 選殖兩種來源不同的 α-1,4-半乳糖轉移酶。C-端截斷 (truncated) 19 個胺基酸的N. meningitides α-1,4-半乳糖轉移酶(LgtC-19)與N-端截斷 38 個胺基酸的 H. influenzae Rd KW20 α-1,4-半乳糖轉移酶(N-cut-38-Hi0258),皆可運用於階段式一鍋化反應合成 Pk 抗原類似物 (α-D-Gal-(1-4)-β-D-Gal-(1-4)-β-D-Glc -OC6H12N3)。


    In this study, the recombinant galactokinases (GalK) from Meiothermus taiwanensis ATCC BAA-400 was cloned, over-expressed, and purified by IMPACTTM-CN system with a yield of 16 mg/L cell cultures. The optimal reaction conditions for recombinant GalK are at 75 °C, and pH at 9.0. The kcat/Km value of recombinant GalK toward galactose is 168.47 s−1 mM−1 and specific unit at 55 °C and 75 °C are 240 U/mg and 388 U/mg, respectively. The GalK was combined with glucose-1- phosphate thymidylyltransferase (RmlA) to synthesize uridine 5’-diphosphate galactose (UDP-Gal) in one-pot reaction.
    In addition, the genes of α-1,4-galactosyltransferases (GalTs) from Neisseria meningitides (19 residues at C-terminal deleted; LgtC-19) and Haemophilus influenzae Rd KW2 (38 residues of N-terminal was deleted;N-cut-38-Hi0258) were cloned and the corresponding proteins were over-expressed. Both α-1,4-GalTs were respectively combined with GalK and RmlA to synthesize Pk antigen derivatives (α-D-Gal-(1-4)-β-D -Gal-(1-4)-β-D-Glc-OC6H12N3) in sequential addition one-pot reaction manner.

    目錄 第一章 序論 1.1. 酵素在有機合成的應用 1.2. 酵素於醣類合成之應用 1.2.1. 醣基水解酶 1.2.2. 醣基轉移酶 1.3. 酵素合成尿苷二磷酸半乳糖方法 1.4. 半乳糖激酶 (GalK) 1.4.1. GalK 的受質忍受度 1.4.2. 基因工程突變 GalK 1.5. 葡萄糖-1-磷酸胸苷轉移酶 (RmlA) 1.6. 半乳糖轉移酶 (GalT) 1.6.1. α-1,3-GalT 1.6.2. β-1,3- GalT 1.6.3. α-1,4- GalT 1.6.4. β-1,4- GalT 1.7. Pk 抗原 1.8. 研究動機與目標 第二章 實驗結果與討論 2.1. 分析 GalK 胺基酸序列 2.2. 以大腸桿菌誘導表現 GalK 2.2.1. 建構含 galk 基因重組載體 2.2.2. galk 基因之聚合酶連鎖反應 2.2.3. 誘導 galk 基因產物之表現 2.3. 最佳化 GalK 反應條件 2.3.1. 測試 DNS 法是否適用於檢測 GalK 產率 2.3.2. GalK 反應活性測試 2.3.3. 最佳化 GalK 反應溫度 2.3.4. 最佳化 GalK 二價金屬離子輔助因子 2.3.5. 最佳化 GalK 反應酸鹼值 2.4. 探討 GalK 動力學特性 2.4.1. 測定 GalK 比活性 2.4.2. 測定 GalK 的 kcat 和對 Gal 的 Km 值 2.4.3. GalK 的受質忍受度 2.4.4. GalK 的熱穩定性 2.5. GalK 的結構預測與分析 2.5.1. 預測 GalK 結構 2.5.2. 以 Ellman 法定量 GalK 中的硫醇基 2.5.3. 測量 GalK CD 光譜與 Tm 值 2.6. 合成 Gal-1-P 2.6.1. 製備 Gal-1-P 2.6.2. 一鍋化合成 UDP-Gal 2.7. 建構 hi0258 基因之重組載體與活性測試 2.7.1. 分析 hi0258 基因序列 2.7.2. hi0258 基因之聚合酶連鎖反應 2.7.3. 誘導 hi0258 基因與 N-cut-38-hi0258 基因產物 之表現 2.7.4. N-cut-38-Hi0258 重組蛋白活性測試 2.8. α-1,4-GalT (LgtC-19) 合成 Pk-C6N3 2.8.1. 表現 α-1,4-GalT(LgtC-19)重組蛋白 2.8.2. 階段性一鍋化反應合成三醣體 Pk-C6N3 第三章 結論與未來展望 3.1. GalK 3.2. α-1,4-GalT 3.3. 階段性一鍋化合成三醣體 Pk 類似物 第四章 實驗材料與方法 4.1. Materials 4.1.1. The Gene Source of Galactokinase 4.1.2. The Gene Source of α-1,4-galactosyltransferase 4.1.3. Enzymes 4.1.4. Chemicals 4.1.5. Machines 4.1.6. Electrophoresis Systems for DNA and Protein 4.2. Cloning, Overexpression, and Purification 4.2.1. Cloning, Overexpression, and Purification of the Full-Length Galactokinase from Meiothermus tai- wanensis ATCC BAA-400 (galk) by IMPACT system 4.2.2. Cloning, Overexpression and Purification of the α-1,4-galactosyltransferase with C-terminal trunca- ted residues of 19 amino acids from Neisseria meni- ngitidis (lgtC-19) by IMPACT system 4.2.3. Cloning, Overexpression and Purification of the α-1,4-galactosyltransferase with N-terminal trunc- ated residues of 38 amino acids from Haemophilus influenzae Rd KW20 (n-cut-38-hi0258) by IMPA- CT system 4.2.4. Cloning the full-length α-1,4-galactosyltransferase from Haemophilus influenzae Rd KW20 (hi0258) by IMPACT system 4.2.5. Cloning the full-length α-1,4-galactosyltransferase (hi0258) and the α-1,4-galactosyltransferase with N-terminal truncated residues of 38 amino acids (n-cut-38-hi0258) from Haemophilus influenzae Rd KW20 by pET system 4.3. Experiments of Galactokinase 4.3.1. DNS Assay 4.3.1.1. The Procedure of DNS Assay 4.3.2. Galactokinase Activity Assay 4.3.3. Determinations of Physicochemical Properties 4.3.3.1. Determination of the Optimal Reaction Tempera- ture of GalK 4.3.3.2. Determination optimum metal ion cofactor of GalK 4.3.3.3. Determination of Optimal pH for GalK Catalyzed Reaction 4.3.4. Determination of Kinetic Parameters of GalK Cata- lyzed Reaction 4.3.5. Determination of Thermostability of GalK 4.3.6. Evaluation of Substrate Tolerance of GalK 4.3.7. Ellman’s Test 4.3.8. Synthesis of Galactose-1-phosphate 4.4. Experiment of α-1, 4-galactosyltransferase 4.4.1. Synthesis of Pk antigen-C6H12N3

    1. Koeller, K. M.; Wong, C. H., Enzymes for chemical synthesis. Nature 2001, 409, 232-240.
    2. Drauz, K.; Waldmann, H., Enzyme catalysis in organic synthesis: A comprehensive hand book. Wiley-VCH: 2002; Vol. Ⅰ-Ⅲ.
    3. Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B., Industrial biocatalysis today and tomorrow. Nature 2001, 409, 258-268.
    4. Schoemaker, H. E.; Mink, D.; Wubbolts, M. G., Dispelling the myths--biocatalysis in industrial synthesis. Science 2003, 299, 1694-1697.
    5. Varki, A., Nothing in glycobiology makes sense, except in the light of evolution. Cell 2006, 126, 841-845.
    6. Ohtsubo, K.; Marth, J. D., Glycosylation in cellular mechanisms of health and disease. Cell 2006, 126, 855-867.
    7. Weerapana, E.; Imperiali, B., Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. Glycobiology 2006, 16, 91R-101R.
    8. Szymanski, C. M.; Wren, B. W., Protein glycosylation in bacterial mucosal pathogens. Nat. Rev. Microbiol. 2005, 3, 225-237.
    9. Weijers, C. A.; Franssen, M. C.; Visser, G. M., Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnol. Adv. 2008, 26, 436-456.
    10. Schmaltz, R. M.; Hanson, S. R.; Wong, C. H., Enzymes in the synthesis of glycoconjugates. Chem. Rev. 2011, 111, 4259-4307.
    11. Garg, H. G.; Cowman, M. K.; Hales, C. A.; ScienceDirect (Online service), Carbohydrate chemistry, biology and medical applications. Elsevier: Oxford, 2008; pp. xv, 414 p.
    12. Chen, X.; Zhang, J.; Kowal, P.; Liu, Z.; Andreana, P. R.; Lu, Y.; Wang, P. G., Transferring a biosynthetic cycle into a productive Escherichia coli strain: large-scale synthesis of galactosides. J. Am. Chem. Soc. 2001, 123, 8866-8867.
    13. Zhou, G.; Liu, X.; Su, D.; Li, L.; Xiao, M.; Wang, P. G., Large scale enzymatic synthesis of oligosaccharides and a novel purification process. Bioorg. Med. Chem. Lett. 2011, 21, 311-314.
    14. Koizumi, S.; Endo, T.; Tabata, K.; Ozaki, A., Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria. Nat. Biotech. 1998, 16, 847-850.
    15. Zhang, J.; Kowal, P.; Chen, X.; Wang, P. G., Large-scale synthesis of globotriose derivatives through recombinant E. coli. Org. Biomol. Chem. 2003, 1, 3048-3053.
    16. Zhang, J.; Wu, B.; Zhang, Y.; Kowal, P.; Wang, P. G., Creatine phosphate--creatine kinase in enzymatic synthesis of glycoconjugates. Org. Lett. 2003, 5, 2583-2586.
    17. Holden, H. M.; Rayment, I.; Thoden, J. B., Structure and function of enzymes of the Leloir pathway for galactose metabolism. J. Biol. Chem. 2003, 278, 43885-43888.
    18. Gulbinsky, J. S.; Cleland, W. W., Kinetic studies of Escherichia coli galactokinase. Biochemistry 1968, 7, 566-575.
    19. Sherman, J. R.; Adler, J., Galactokinse from Escherichia coli. J. Biol. Chem. 1963, 238, 873-878.
    20. Adams, B. G., Induction of galactokinase in Saccharomyces cerevisiae: kinetics of induction and glucose effects. J. Bacteriol. 1972, 111, 308-315.
    21. Schell, M. A.; Wilson, D. B., Purification and properties of galactokinase from Saccharomyces cerevisiae. J. Biol. Chem. 1977, 252, 1162-1166.
    22. Choi, J. Y.; Lee, J.-H.; Lee, J. M.; Kim, J. H.; Chang, H. C.; Chung, D. K.; Cho, S. K.; Lee, H. J., Expression of the Galactokinase Gene (galK) from Lactococcus lactis ssp. lactis ATCC7962 in Escherichia coli. J. Microbio. 2002, 156-160.
    23. Hutkins, R.; Morris, H. A.; McKay, L. L., Galactokinase activity in Streptococcus thermophilus. Appl. Environ. Microbiol. 1985, 50, 777-780.
    24. Ballard, F. J., Kinetic studies with liver galactokinase. Biochem. J. 1966, 101, 70-75.
    25. Timson, D. J.; Reece, R. J., Sugar recognition by human galactokinase. BMC Biochem. 2003, 4, 16.
    26. Chu, X.; Li, N.; Liu, X.; Li, D., Functional studies of rat galactokinase. J. Biotechnol. 2009, 141, 142-146.
    27. Walker, D. G.; Khan, H. H., Some properties of galactokinase in developing rat liver. Biochem. J. 1968, 108, 169-175.
    28. Chen, M.; Chen, L. L.; Zou, Y.; Xue, M.; Liang, M.; Jin, L.; Guan, W. Y.; Shen, J.; Wang, W.; Wang, L.; Liu, J.; Wang, P. G., Wide sugar substrate specificity of galactokinase from Streptococcus pneumoniae TIGR4. Carbohydr. Res. 2011, 346, 2421-2425.
    29. Zou, Y.; Wang, W.; Cai, L.; Chen, L.; Xue, M.; Zhang, X.; Shen, J.; Chen, M., Substrate specificity of galactokinase from Streptococcus pneumoniae TIGR4 towards galactose, glucose, and their derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 3540-3543.
    30. Hoffmeister, D.; Yang, J.; Liu, L.; Thorson, J. S., Creation of the first anomeric D/L-sugar kinase by means of directed evolution. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 13184-13189.
    31. Yang, J.; Fu, X.; Liao, J.; Liu, L.; Thorson, J. S., Structure-based engineering of E. coli galactokinase as a first step toward in vivo glycorandomization. Chem. Biol. 2005, 12, 657-664.
    32. Alvarado, F., Substrate specificity of Saccharomyces fragilis galactokinase. Biochim. Biophys. Acta 1960, 41, 233-238.
    33. Verhees, C. H.; Koot, D. G.; Ettema, T. J.; Dijkema, C.; de Vos, W. M.; van der Oost, J., Biochemical adaptations of two sugar kinases from the hyperthermophilic archaeon Pyrococcus furiosus. Biochem. J. 2002, 366, 121-127.
    34. Ballard, F. J., Purification and properties of galactokinase from pig liver. Biochem. J. 1966, 98, 347-352.
    35. Li, L.; Liu, Y.; Wang, W.; Cheng, J.; Zhao, W.; Wang, P., A highly efficient galactokinase from Bifidobacterium infantis with broad substrate specificity. Carbohydr. Res. 2012, 355, 35-39.
    36. Yang, J.; Fu, X.; Jia, Q.; Shen, J.; Biggins, J. B.; Jiang, J.; Zhao, J.; Schmidt, J. J.; Wang, P. G.; Thorson, J. S., Studies on the substrate specificity of Escherichia coli galactokinase. Org. Lett. 2003, 5, 2223-2226.
    37. Yang, J.; Liu, L.; Thorson, J. S., Structure-based enhancement of the first anomeric glucokinase. Chembiochem 2004, 5, 992-996.
    38. Hoffmeister, D.; Thorson, J. S., Mechanistic implications of Escherichia coli galactokinase structure-based engineering. Chembiochem 2004, 5, 989-992.
    39. Barton, W. A.; Lesniak, J.; Biggins, J. B.; Jeffrey, P. D.; Jiang, J.; Rajashankar, K. R.; Thorson, J. S.; Nikolov, D. B., Structure, mechanism and engineering of a nucleotidylyltransferase as a first step toward glycorandomization. Nat. Struct. Biol. 2001, 8, 545-551.
    40. Graninger, M.; Kneidinger, B.; Bruno, K.; Scheberl, A.; Messner, P., Homologs of the Rml enzymes from Salmonella enterica are responsible for dTDP-beta-L-rhamnose biosynthesis in the gram-positive thermophile Aneurinibacillus thermoaerophilus DSM 10155. Appl. Environ. Microbiol. 2002, 68, 3708-3715.
    41. Moretti, R.; Thorson, J. S., Enhancing the latent nucleotide triphosphate flexibility of the glucose-1-phosphate thymidylyltransferase RmlA. J. Biol. Chem. 2007, 282, 16942-16947.
    42. Timmons, S. C.; Mosher, R. H.; Knowles, S. A.; Jakeman, D. L., Exploiting nucleotidylyltransferases to prepare sugar nucleotides. Org. Lett. 2007, 9, 857-860.
    43. Chen, X.; Zhang, W.; Wang, J. Q.; Fang, J. W.; Wang, P. G., Production of alpha-galactosyl epitopes via combined use of two recombinant whole cells harboring UDP-galactose 4-epimerase and alpha-1,3-galactosyltransferase. Biotechnol. Prog. 2000, 16, 595-599.
    44. Chen, X.; Liu, Z.; Wang, J. Q.; Fang, J. W.; Fan, H. N.; Wang, P. G., Changing the donor cofactor bovine alpha 1,3-galactosyltransferase by fusion with UDP-galactose 4-epimerase - More efficient biocatalysis for synthesis of alpha-Gal epitopes. J. Biol. Chem. 2000, 275, 31594-31600.
    45. Blixt, O.; Vasiliu, D.; Allin, K.; Jacobsen, N.; Warnock, D.; Razi, N.; Paulson, J. C.; Bernatchez, S.; Gilbert, M.; Wakarchuk, W., Chemoenzymatic synthesis of 2-azidoethyl-ganglio-oligosaccharides GD3, GT3, GM2, GD2, GT2, GM1, and GD1a. Carbohydr. Res. 2005, 340, 1963-1972.
    46. Bernatchez, S.; Gilbert, M.; Blanchard, M. C.; Karwaski, M. F.; Li, J.; DeFrees, S.; Wakarchuk, W. W., Variants of the beta 1,3-galactosyltransferase CgtB from the bacterium Campylobacter jejuni have distinct acceptor specificities. Glycobiology 2007, 17, 1333-1343.
    47. Yi, W.; Perali, R. S.; Eguchi, H.; Motari, E.; Woodward, R.; Wang, P. G., Characterization of a bacterial beta-1,3-galactosyltransferase with application in the synthesis of tumor-associated T-antigen mimics. Biochemistry 2008, 47, 1241-1248.
    48. Zhou, G. Y.; Liu, X. W.; Su, D. R.; Li, L.; Xiao, M.; Wang, P. G., Large scale enzymatic synthesis of oligosaccharides and a novel purification process. Bioorg. Med. Chem. Lett. 2011, 21, 311-314.
    49. Liu, Z.; Lu, Y.; Zhang, J.; Pardee, K.; Wang, P. G., P1 Trisaccharide (Galalpha1,4Galbeta1,4GlcNAc) synthesis by enzyme glycosylation reactions using recombinant Escherichia coli. Appl. Environ. Microbiol. 2003, 69, 2110-2115.
    50. Wakarchuk, W. W.; Cunningham, A.; Watson, D. C.; Young, N. M., Role of paired basic residues in the expression of active recombinant galactosyltransferases from the bacterial pathogen Neisseria meningitidis. Protein Eng. 1998, 11, 295-302.
    51. Zhang, J. B.; Kowal, P.; Fang, J. W.; Andreana, P.; Wang, P. G., Efficient chemoenzymatic synthesis of globotriose and its derivatives with a recombinant alpha-(1 -> 4)-galactosyltransferase. Carbohydr. Res. 2002, 337, 969-976.
    52. Deng, C. H.; Chen, R. R., A pH-sensitive assay for galactosyltransferase. Anal. Biochem. 2004, 330, 219-226.
    53. Lau, K.; Thon, V.; Yu, H.; Ding, L.; Chen, Y.; Muthana, M. M.; Wong, D.; Huang, R.; Chen, X., Highly efficient chemoenzymatic synthesis of beta 1-4-linked galactosides with promiscuous bacterial beta 1-4-galactosyltransferases. Chem. Commun. 2010, 46, 6066-6068.
    54. Sauerzapfe, B.; Krenek, K.; Schmiedel, J.; Wakarchuk, W. W.; Pelantova, H.; Kren, V.; Elling, L., Chemo-enzymatic synthesis of poly-N-acetyllactosamine (poly-LacNAc) structures and their characterization for CGL2-galectin-mediated binding of ECM glycoproteins to biomaterial surfaces. Glycoconjugate J. 2009, 26, 141-159.
    55. Louise, C. B.; Obrig, T. G., Specific interaction of Escherichia coli O157:H7-derived Shiga-like toxin II with human renal endothelial cells. J. Infect. Dis. 1995, 172, 1397-1401.
    56. Keusch, G. T.; Jacewicz, M.; Acheson, D. W.; Donohue-Rolfe, A.; Kane, A. V.; McCluer, R. H., Globotriaosylceramide, Gb3, is an alternative functional receptor for Shiga-like toxin 2e. Infect. Immun. 1995, 63, 1138-1141.
    57. Lund, N.; Olsson, M. L.; Ramkumar, S.; Sakac, D.; Yahalom, V.; Levene, C.; Hellberg, A.; Ma, X. Z.; Binnington, B.; Jung, D.; Lingwood, C. A.; Branch, D. R., The human P(k) histo-blood group antigen provides protection against HIV-1 infection. Blood 2009, 113, 4980-4991.
    58. Chen, M. Y.; Lin, G. H.; Lin, Y. T.; Tsay, S. S., Meiothermus taiwanensis sp. nov., a novel filamentous, thermophilic species isolated in Taiwan. Int. J. Syst. Evol. Microbiol. 2002, 52, 1647-1654.
    59. Fleischmann, R. D.; Adams, M. D.; White, O.; Clayton, R. A.; Kirkness, E. F.; Kerlavage, A. R.; Bult, C. J.; Tomb, J. F.; Dougherty, B. A.; Merrick, J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995, 269, 496-512.
    60. Hood, D. W.; Cox, A. D.; Wakarchuk, W. W.; Schur, M.; Schweda, E. K.; Walsh, S. L.; Deadman, M. E.; Martin, A.; Moxon, E. R.; Richards, J. C., Genetic basis for expression of the major globotetraose-containing lipopolysaccharide from H. influenzae strain Rd (RM118). Glycobiology 2001, 11, 957-967.
    61. Swords, W. E.; Jones, P. A.; Apicella, M. A., The lipooligosaccharides of Haemophilus influenzae: an interesting array of characters (vol 9, pg 131, 2003). J Endotoxin. Res. 2003, 9, 336-336.
    62. Moretti, R.; Thorson, J. S., A comparison of sugar indicators enables a universal high-throughput sugar-1-phosphate nucleotidyltransferase assay. Anal. Biochem. 2008, 377, 251-258.
    63. Lavine, J. E.; Cantlay, E.; Roberts, C. T., Jr.; Morse, D. E., Purification and properties of galactokinase from Tetrahymena thermophila. Biochim. Biophys. Acta 1982, 717, 76-85.
    64. Lee, L. J.; Kinoshita, S.; Kumagai, H.; Tochikura, T., Galactokinase of Bifidobacterium-Bifidum. Agric. Biol. Chem. 1980, 44, 2961-2966.
    65. Verhees, C. H.; Koot, D. G. M.; Ettema, T. J. G.; Dijkema, C.; De Vos, W. M.; Van Der Oost, J., Biochemical adaptations of two sugar kinases from the hyperthermophilic archaeon Pyrococcus furiosus. Biochem. J. 2002, 366, 121-127.
    66. Chien, W. T.; Liang, C. F.; Yu, C. C.; Lin, J. H.; Wu, H. T.; Lin, C. C., Glucose 1-Phosphate Thymidylyltransferase in the Synthesis of Uridine 5 '-Diphosphate Galactose and its Application in the Synthesis of N-Acetyllactosamine. Adv. Synth. Catal. 2012, 354, 123-132.
    67. Kelley, L. A.; Sternberg, M. J. E., Protein structure prediction on the Web: a case study using the Phyre server. Nat. protocols 2009, 4, 363-371.
    68. Betz, S. F., Disulfide Bonds and the Stability of Globular-Proteins. Protein Sci. 1993, 2, 1551-1558.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE