簡易檢索 / 詳目顯示

研究生: 李才郎
Lee, Tsai-Lung
論文名稱: 中空陰極式電漿源之研究
Study of a Hollow Cathode Plasma Source
指導教授: 寇崇善
Kou, Chwung-Shan
口試委員: 寇崇善
周賢鎧
劉偉強
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 40
中文關鍵詞: 中空陰極
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳汙染會影響電子顯微鏡的解析度,為此本論文建立中空陰極式電漿源系統,希望將來能應用於電子顯微鏡的清潔。實驗內容包括以Langmuir Probe觀察電漿特性如電漿密度及電子溫度;觀察氧氣、氫氣、空氣電漿在各種環境下的OES光譜;觀察PVC受Downstream電漿處理的水滴角變化,與Langmuir Probe量測和OES量測做比較。研究結果我們可以低頻、低功率方式點起中空陰極式電漿,並且證實電漿可與碳氫物進行反應。實驗結果顯示在40 mTorr、60 W即可點起電漿,密度可達1011 cm-3,距離電漿源18 cm處密度仍有1010 cm-3。PVC受電漿處理後水滴角下降,在距離電極18 cm處最多可從75°降至11°,在28 cm處最多可降至22°。


    圖目錄 III 表目錄 V 第一章 緒論 1 1.1前言 1 1.2中空陰極式電漿源 2 1.3實驗目的 3 第二章 實驗設備與量測系統 4 2.1中空陰極式電漿源系統 4 2.2 Langmuir Probe 量測系統 6 2.3光譜儀量測系統 8 2.4接觸角量測系統 9 2.5磁場量測儀 10 2.6實驗流程 11 第三章 實驗原理 14 3.1 Langmuir Probe理論 14 3.1.1 I-V曲線分析 14 3.1.2電漿特性參數計算 16 3.2 PVC 17 3.3 聚合物在電漿中的反應 18 第四章 實驗結果與討論 19 4.1電漿密度與電子溫度量測與分析 19 4.1.1電漿密度與功率、氣壓的關係 19 4.1.2電子溫度與功率、氣壓的關係 21 4.1.3電子溫度和電漿密度與半徑的關係 22 4.2光譜量測與分析 23 4.2.1 磁場量測 24 4.2.2空氣光譜量測 25 4.2.3氧氣光譜量測 27 4.2.4氫氣光譜量測 29 4.3接觸角量測與分析 31 4.3.1電漿氣壓對PVC接觸角之影響 32 4.3.2電漿流量對PVC接觸角之影響 33 4.3.3電漿功率對PVC接觸角之影響 34 4.3.4垂直距離對PVC接觸角之影響 35 4.3.5半徑對PVC接觸角之影響 36 第五章 結論 37 參考資料 39

    [1] A. Griffiths and T. Walther, "Quantification of carbon contamination under electron beam irradiation in a scanning transmission electron microscope and its suppression by plasma cleaning," Journal of Physics: Conference Series, vol. 241, 2010.
    [2] C. M. McGilvery, A. E. Goode, M. S. P. Shaffer, and D. W. McComb, "Contamination of holey/lacey carbon films in STEM," Micron, vol. 43, pp. 450–455, 2012.
    [3] S. Horiuchi, T. Hanada, M. Ebisawa, Y. Matsuda, M. Kobayashi, and A. Takahara, "Contamination-free transmission electron microscopy for high-resolution carbon elemental mapping of polymers," ACS Nano, vol. 3, pp. 1297–1304, 2009.
    [4] T. C. Isabell, P. E. Fischione, C. O'Keefe, M. U. Guruz, and V. P. Dravid, "Plasma Cleaning and Its Applications for Electron Microscopy," Microscopy and Microanalysis, vol. 5, pp. 126-135, 1999.
    [5] C. G. Morgan, D. Varley, and R. Vane, "Remote Plasma Cleaning from a TEM Sample Holder with an EvactronR De-Contaminator," Microscopy and Microanalysis, vol. 16, pp. 48-49, 2010.
    [6] H. Eichhorn, K. H. Schoenbach, and T. Tessnow, "Paschen’s law for a hollow cathode discharge," Applied Physics Letters, vol. 63, p. 3, 1993.
    [7] Y.-c. Park, "Hollow Cathode Plasma Source Characteristics," Naval Postgraduate School, 1989.
    [8] F. F. Chen, Plasma Diagnostic Techniques, 1965.
    [9] P. I. D. Center. (2003). 塑膠物語: 聚氯乙烯 (polyvinyl chloride, PVC).
    [10] R. d'Agostino, Plasma Deposition, Treatment, and Etching of Polymers: Academic Press
    1990.
    [11] J. D. Getty. How Plasma-Enhanced Surface Modification Improves the Production of Microelectronics and Optoelectronics. Available: http://www.nordson.com/en-us/divisions/march/support/Literature/Documents/techpaper-semiconductorapplications5.pdf
    [12] N. L. Singh, A. Qureshi, S. Mukherjee, A. K. Rakshit, A. Tripathi, and D. K. Avasthi, "Surface modification of polymeric blends by nitrogen plasma implantation," Surface & Coatings Technology, vol. 201, pp. 8278-8281, 2007.
    [13] M. T. Khorasani and H. Mirzadeh, "Effect of oxygen plasma treatment on surface charge and wettability of PVC blood bag—In vitro assay," Radiation physics and chemistry, vol. 76, pp. 1011-1016, 2007.
    [14] R. Wilken, A. Holla¨nder, and J. Behnisch, "Surface radical analysis on plasma-treated polymers," Surface and Coatings Technology, vol. 116, pp. 991-995, 1999.
    [15] M. A. Lieberman, Principles of Plasma Discharges and Materials Processing, 1 ed., 1994.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE