簡易檢索 / 詳目顯示

研究生: 何國楨
Ho, Kuo-Chen
論文名稱: 經γ-ray 照射之HEMA 受到緩衝液引發特殊表面形貌
Buffer-Induced surface patterns of Irradiated Poly (2-Hydroxyethyl Methacrylate)
指導教授: 李三保
Lee, Sanboh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 88
中文關鍵詞: 緩衝溶液加馬射線甲基丙烯酸2-羥乙酯表面形貌
外文關鍵詞: buffer, γ-ray, 2-Hydroxyethyl Methacrylate, Surface pattern
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文
    本研究主要研究照輻射的HEMA高分子浸泡緩衝溶液下表面形貌變化的動力學研究。探討不同輻射劑量以及劑量率,溶液pH值,溫度,以及試片厚度等因素對表面形貌的影響。

    附錄
    探討PMMA吸收甲醇溶劑後,單面揮發所造成試片彎曲情形。


    致謝 I Abstract II Contents III Figure Captions V List of Tables IX Chapter 1 Introduction 1 Chapter 2 Literature Review 3 Chapter 3 Theoretic Model Review 11 3-1 Pattern Formation Mechanism 11 3-2 The order of the patterns related to the osmotic pressure 13 3-3 Kinetic growth at early stage 14 Chapter 4 Experimental 16 4-1 Sample preparation 16 4-2 Gamma-ray irradiation 16 4-3 Buffer solution preparation 17 4-4 Kinetic experiment 17 4.4-1 Dose effect 17 4.4-2 Dose rate effect 17 4.4-3 Oxygen inhibition effect 18 4.4-4 pH value effect 18 4.4-5 Sample thickness effect 18 4.4-6 Temperature effect 18 4-5 Measurement of wavelength and amplitude 19 Experimental procedures 20 Chapter 5 Results and Discussion 22 5-1 Characteristic Wavelength analysis processing 22 5-2 Time effect 22 5-3 pH value effect 23 5-4 Dose effect 24 5-5 Dose rate and oxygen effect 26 5-6 Temperature effect 27 5-7 Sample thickness effect 27 5-8 Surface morphology evolution 28 5-9 Linear fitting for initial growth of wavelength 29 Chapter 6 Conclusions 65 References 67 Appendix: One side desorption of PMMA 72 Abstract 72 Figure Captions 73 A.1 Introduction 74 A.2 Experimental 76 Experimental procedures 77 A.3 Results and Discussion 78 A.4 Conclusions 86 References 87

    1. M. Aizawa and J. M. Buriak, “Block Copolymer Templated Chemistry for the Formation of Metallic Nanoparticle Arrays on Semiconductor Surfaces” Chemistry of Materials, 9, 5090-5101 (2007)
    2. E. P. Chan, E. J. Smith, R. C. Hayward, and A. J. Crosby, “Surface Wrinkles for Smart Adhesion” Advanced Material, 20, 711–716 (2008)
    3. S. Singamaneni, K. Bertoldi, S. Chang, J. Jang, E. L. Thomas, M. C. Boyce, and V. V. Tsukruk, “Instabilities and Pattern Transformation in Periodic, Porous Elastoplastic Solid Coatings ” ACS Applied Materials & Interfaces, 1, 42-47 (2009)
    4. S. J. Hollister, “Porous scaffold design for tissue engineering” Nature Materials, 4, 518–524 (2005).
    5. Z. H. Nie and E. Kumacheva, “Patterning surfaces with functional polymers” Nature Materials, 7, 277–290 (2008)
    6. S. H. Kim, A. Opdahl, C. Marmo, and G. A. Somorjai1, ” AFM and SFG studies of PHEMA-based hydrogel contact lens surfaces in saline solution: adhesion, friction, and the presence of non-crosslinked polymer chains at the surface” Biomaterials, 23, 1657-1666 (2002)
    7. A. Opdahl, S. H. Kim, T. S. Koffas, C. Marmo, and G. A. Somorjai1, “Surface mechanical properties of PHEMA contact lenses: Viscoelastic and adhesive property changes on exposure to controlled humidity” Journal of Biomedical Materials Research. Part A, 67A, 350-356 (2003)
    8. K. Ishihara, H. Nomura, T. Mihara, K. Kurita, Y. Iwasaki, and N. Nakabayashi, “Why do phospholipid polymers reduce protein adsorption?” Journal of Biomedical Materials Research. Part A, 39, 323-330 (1998)
    9. J. M. Rosiak and F. Yoshii, “Hydrogels and their medical applications ” physics Research B, 151, 56-64 (1999)
    10. J. Kost and R. Langer, “Responsive polymeric delivery systems” Advanced Drug Delivery Reviews, 46,125-148 (2001)
    11. P. Gupta, K. Vermani, and S. Garg, “ Hydrogels: from controlled release to pH-responsive drug delivery” Drug Discovery Today, 7, 569-579 (2002)
    12. K. F. Chou, C. C. Han and S. Lee, “Water transport in crosslinked 2-hydroxyethyl methacrylate” Polymer Engineering and Science, 40, 1004-1014 (2000)
    13. K. F. Chou, C. C. Han and S. Lee, “Water transport in 2-hydroxyethyl methacrylate copolymer irradiated by γ rays in air and related phenomena” Journal of Polymer Science. Part B, Polymer physics, 38, 659-671 (2000).
    14. K. F. Chou, C. C. Han and S. Lee, “Evolution of Surface Morphology in 2-Hydroxyethyl Methacrylate” Macromolecules, 36, 5683-5688 (2003)
    15. T. Tanaka, S.T. Sun, Y. Hirokawa, S. Katayama, J. Kucera, Y. Hirose, and T. Amiya, “Mechanical instability of gels at the phase transition” Nature, 325, 796 (1987)
    16. H. Tanaka, H. Tomita, A. Takasu, T. Hayashi and T. Nishi, “Morphological and kinetic evolution of surface patterns in gels during the swelling process Evidence of dynamic pattern ordering” physical Review Letters , 68, 2794–2797 (1992)
    17. H. Tanaka, T. Hayashi, and T. Nishi, “Application of digital image analysis to the study of high‐order structure of polymers” Journal of Applied physics, 59, 3627 (1986)
    18. N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer” Nature, 393, 146-149 (1998)
    19. N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesidesa, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer” Applied physics Letters, 75, 2557–2559 (1999)
    20. D. B. H. Chua, H. T. Ng, and S. F. Y. Li, “Spontaneous formation of complex and ordered structures on oxygen-plasma-treated elastomeric polydimethylsiloxane” Applied physics Letters, 76 (6), 721–723 (2000)
    21. W. T. S. Huck, N. Bowden, P. Onck, T. Pardoen, J. W. Hutchinson, and G. M. Whitesides, “Ordering of Spontaneously Formed Buckles on Planar Surfaces” Langmuir, 16, 7, 3497-3501 (2000)
    22. S. K. Basu, A. M. Bergstreser, L. F. Francis, L. E. Scriven, and A. V. McCormick, “ Wrinkling of a two-layer polymeric coating ” Journal of Applied physics, 98, 063507 (2005)
    23. K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins” Nature, 4, 293-297 (2005)
    24. R. Huang, C. M. Stafford, and B. D. Vogt, “Effect of Surface Properties on Wrinkling of Ultrathin Films” Journal of Aerospace Engineering, 20, 38-44 (2007)
    25. A. L. Volynskii, S. Bazhenov, O. V. Lebedeva and N. F. Bakeev, “Mechanical buckling instability of thin coatings deposited on soft polymer substrates” Journal of Materials Science, 35, 547–554 (2000)
    26. C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films” Nature Materials, 3, 545 - 550 (2004)
    27. E. Cerda, K. R. Chandar, and L. Mahadevan, “Wrinkling of an elastic sheet under tension” Nature , 419, 579–580 (2002)
    28. M. Pretzl, A. Schweikart, C. Hanske, A. Chiche, U. Zettl, A. Horn, A. Bo¨ker, and A. Fery, “A LithograpHy-Free Pathway for Chemical Microstructuring of Macromolecules from Aqueous Solution Based on Wrinkling” Langmuir, 24, 12748-12753 (2008)
    29. H. Lalo and C. Vieu, “Nanoscale Patterns of Dendrimers Obtained by Soft Lithography Using Elastomeric Stamps Spontaneously Structured by Plasma Treatment” Langmuir, 25, 7752–7758 (2009)
    30. P. J. Flory, “Principles of Polymer Chemistry”, Cornell University Press, Ithaca (1953).
    31. T. Yeung, P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. A. Janmey, “Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion” Cell Motility and the Cytoskeleton, 60, 24–34 (2005)
    32. S. K. Basu, L.E. Scriven, L.F. Francis, and A.V. McCormick, “Mechanism of wrinkle formation in curing coatings” Progress in Organic Coatings, 53, 1–16 (2005)
    33. S. K. Basu, L. E. Scriven, L. F. Francis, A. V. McCormick, and V. R. Reichert, “Wrinkling of Epoxy Powder Coatings” Journal of Applied Polymer Science, 98, 116–129 (2005)
    34. S. K. Basu, J. A. Chung, L. F. Francis, A. V. McCormick, and L. E. Scriven, “Modeling the Depthwise Gradient in Curing and Skin Formation in Wrinkling Coatings” Industrial & Engineering Chemistry Research, 46, 3358-3365 (2007)
    35. V. Trujillo, J. Kim, and R. C. Hayward, “Creasing instability of surface-attached hydrogels” Soft Matter, 4, 564–569 (2008)
    36. R. C. Hayward, B. F. Chmelka, and E. J. Kramer, “Template Cross-Linking Effects on Morphologies of Swellable Block Copolymer and Mesostructured Silica Thin Films” Macromolecules, 38, 7768-7783 (2005)
    37. K. F. Chou, C.C. Han, and S. Lee, “Buffer transport in hydroxyethyl methacrylate copolymer irradiated by gamma rays” Polymer, 42, 4989-4996 (2001)
    38. M. Guvendiren, S. Yang, and J. A. Burdick, “Swelling-Induced Surface Patterns in Hydrogels with Gradient Crosslinking Density” Advanced Functional Materials, 19, 3038–3045 (2009)
    39. M. Guvendiren, J. A. Burdick, and S. Yang, “Kinetic study of swelling-induced surface pattern formation and ordering in hydrogel films with depth-wise crosslinking gradient” Soft Matter, 6, 2044–2049 (2010)
    40. T. C. Mcilvaine, “A buffer solution for colorimetric comparison” Journal of Biological Chemistry, 49, 183-186 (1921)
    41. C. L. Huang, “Solvent-induced surface ripple pattern in irradiated polycarbonate” Master Thesis, Department of Material Science and Engineering Tsing Hua University (2007)
     
    Appendix references

    1. D. R. Evans and V. S. J. Craig, “The Origin of Surface Stress Induced by Adsorption of Iodine on Gold” The journal of physical chemistry B, 110, 19507-19514 (2006)
    2. J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, and M. E. Welland, “A femtojoule calorimeter using micromechanical sensors” Review of scientific instruments, 65, 3793-3798 (1994)
    3. V. T. Cossa, M. Godin, L. Y. Beaulieu, and P. Grutter, “A differential microcantilever-based system for measuring surface stress changes induced by electrochemical reactions” Sensors and Actuators B, 107, 233–241 (2005)
    4. A. R. Sousa, E. S. Arau´jo, A. L. Carvalho, M. S. Rabello, and J. R. White, “The stress cracking behaviour of poly(methyl methacrylate) after exposure to gamma radiation” Polymer Degradation and Stability, 92, 1465-1475 (2007)
    5. H. Katsuragi, “Diffusion-induced spontaneous pattern formation on gelation surfaces” Europhysics Letter, 73, 793–799 (2006)
    6. C. K. Liu, T. J. Yang, J. S. Shena, and S. Lee, “Some recent results on crack healing of poly(methyl methacrylate)” Engineering Fracture Mechanics, 75, 4876–4885 (2008)
    7. T. Alfrey, E. F. Gurnee, and W. G. Lloyd, “Diffusion in Glassy Polymers” Journal of Polymer Science C, 12, 249 (1966)
    8. J. P. Harmon, S. Lee and J.C.M. Li, “Methanol Transport in PMMA: The Effect of Mechanical Deformation” Journal of Polymer Science A, 25, 3215 (1987)
    9. A. Silberberg, “The Role of Matrix Mechanical Stress in Swelling Equilibrium and Transport through Networks” Macromolecules, 13, 742-748 (1980)
    10. W. L. Wang, J. R. Chen, and S. Lee, “Solvent-induced stresses in glassy polymer: Elastic model” Journal of Material Research, 14, 4111-4118 (1999)
    11. M. Born and E. Wolf, “Fringes with Thin Films; the Fizeau Interferometer”, Principles of Optics, (Oxford, New York, 1980). P. 288
    12. K. B. Lee, “The Effect of Ferric Chloride Hexahydrate on Solvent Welding and Wear of Poly(Methyl Methacrylate): Appendix: Stress measurement of PMMA after desorption” Master Thesis, Department of Material Science and Engineering Tsing Hua University (2000)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE