簡易檢索 / 詳目顯示

研究生: 戴芳君
Tai, Fang-Chun
論文名稱: 探討五年級學生使用圖像表徵解題在擴分、約分和通分上的表現
A Study of 5th Graders'Performance on Using Diagrams to Solve Problems of Expansion, Reduction and Reduction to Common Denominator
指導教授: 林勇吉
Lin, Yung-Chi
口試委員: 秦爾聰
Chin, Erh-Tsung
陳正忠
Chen, Jeng-Chung
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 數理教育研究所
Graduate Institute of Mathematics and Science Education
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 115
中文關鍵詞: 擴分約分通分圖像表徵低中高分組
外文關鍵詞: expansion, reduction, reduction to common denominator, diagrams, low, medium, and high performing group
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 探討五年級學生使用圖像表徵解題在擴分、約分和通分上的表現
    摘要
    本研究以個案研究方式探討五年級學生使用圖像表徵解題在擴分、約分和通分上的表現,研究對象選取方式為使用獨立樣本T檢定選出同質性最高的兩個班級,共48人,透過自編「國小五年級擴分、約分和通分測驗卷」按照學生五上數學成績表現排序,交錯給予A、B試卷作測驗,再將兩卷測驗成績以統計分析方式整理與隨機選取測驗成績低、中、高分者和及平時數學成績表現低成就但在本測驗表現高分者等共十六位深入訪談,收集學生在解題計算過程時有無附圖像表徵之解題情形與解題想法,並了解學生解題時與表徵的思考連結過程及分數概念的理解。
    研究結果如下:
    一、附圖像表徵試題能使低成就表現學生成績明顯提升
    圖像表徵如同學生解題的引信,能引起學生對解題的意願、興趣與自信,即使是低成就的學生對於不容易理解的文字題,也會想仔細觀察附圖思考與題意的關聯性,透過主動性的思考與觀察,自行建構解題的能力,進而從附圖表徵重新理解題意,並正確解題,使成績表現提升至高分組。
    二、訪談過程中適當的引導學生觀察圖像表徵,學生可以透過圖像表徵自我修正
    透過引導再予以圖像表徵做參考,學生由圖像表徵的觀察與思考,便能自行發現並澄清自己在算式上的錯誤。這些解題失敗的學生,大部分都能經由引導在圖像表徵上找到解題的關鍵,重新做出正確的解題。
    三、學生於有附圖題型測驗之成績表現未必完全優於無附圖題型測驗之成績表現
    第四章的資料顯示,無論是分數擴分,約分和通分,從低、中、高分組成績表現觀察,雖然A組學生整體附圖題型測驗表現較明顯高於B組無附圖題型,但對於高分組的兩組學生之間測驗成績表現並無較明顯差異。

    關鍵詞:擴分、約分、通分、圖像表徵、低中高分組


    Abstract
    This study conducted case studies to explore the performances of the 5th graders on using diagrams to solve problems of expansion, reduction, and reduction to a common denominator. In this study, 48 students from two classes with the highest homogeneity were selected based on an independent sample T-test. Self-designed“Test Paper of Expansion, Reduction, and Reduction to Common Denominator for 5th Graders” were used on student subjects as experimental material to conduct the A/B test in alternating order according to their math performance ranking obtained from the first semester of their fifth year of study. Then, the results of these two tests were organized through statistical analysis to randomly select a total of 16 subjects who scored high, medium, and low marks, as well as those who generally did not perform well at math but scored high marks in this experiment to carry out in-depth interviews. The interviews collected subjects’ opinions on solving problems with and without diagrams and the related problem-solving processes as well as explored how students connect the diagrams with questions during these processes and their understandings for fractions.
    The results of this study are as follows:
    1.Test papers with diagrams can significantly enhance the performances of low-performing students.
    Diagrams were like problem-solving cues for students and could trigger their willingness, interests, and confidence regarding this process. When it comes to plain-text questions, even the low-performing students would observe the attached diagrams and think about how they are related to the questions. Through proactive thinking and observation, student subjects managed to construct problem-solving abilities independently, rethink the meanings of the questions based on the diagrams, and resolve the problems correctly, making their scores on par with the high-performing groups.
    2.Students can make corrections independently through diagrams when appropriately guided to observe the diagrams during the interviews.
    With the guidance and referencing diagrams, the students were able to discover and correct their calculation mistakes based on their observation and thinking of the diagrams. Most of the students who failed on the problems could find the key to problem-solving and resolved them correctly through the diagrams when guidance was provided.
    3.Students' performances at tests with diagrams will not necessarily be higher than those they get at tests without diagrams.
    The data provided in Chapter Four suggested that regarding the observation yielded from low, medium, and high performing groups on questions related to either expansion, reduction, or reduction to common denominator, students from Group A had overall performed significantly better than those from Group B at the tests with diagrams. However, there are not any significant differences among high-performing students from both groups.
    Keywords: expansion, reduction, reduction to common denominator, diagrams,low, medium, and high performing group

    目錄 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 2 第三節 名詞解釋 3 第四節 研究範圍與限制 4 第二章 文獻探討 6 第一節 分數的學習 6 第二節 數學表徵 15 第三節 表徵與分數學習之相關研究 20 第四節 表徵與數學解題之相關研究 25 第三章 研究方法與過程 30 第一節 研究架構與流程 30 第二節 研究方法與工具 32 第三節 研究對象 33 第四節 研究工具 34 第五節 資料整理與分析 41 第四章 研究結果分析 43 第一節 學生於附圖像表徵測驗之擴分、約分和通分解題表現 43 第二節 學生於無附圖像表徵測驗之擴分、約分和通分解題表現 74 第三節 比較學生於有無附圖像表徵測驗之擴分、約分和通分成績表現 99 第五章 結論與建議 103 第一節 結論 103 第二節 建議 104 參考文獻 106 中文文獻 106 英文文獻 108 附錄 112 附錄一 有附圖像表徵測驗 112 附錄二 無附圖像表徵測驗卷 114   表目錄 表2-1-1 分數與國小各年級相關的學習內容及對照之學習表現 8 表2-1-2 108年數學綱領中五年級學習重點 9 表2-2-1 國外研究 16 表2-2-2 國內研究 19 表2-3-1 表徵發展層次之特徵,各層次及其表現特徵 22 表3-3-1 X班與Y班五上數學總成績之分析結果(獨立樣本t檢定) 34 表3-2-1 教科書分數學習內容分析 34 表3-2-2 K版本分數學習擴分、約分和通分單元教材內容對照 36 表3-2-3 A卷(有畫圖),半結構式訪談大綱 40 表3-2-4 B卷(不要求畫圖),半結構式訪談大綱 40 表3-4-1 圖像表徵類型與題目舉例 41 表3-4-2 半結構是訪談代碼 42 表4-1-1 不同表徵:面積表徵、離散量表徵、線段表徵解題情形統計表 43 表4-1-2 擴分題型於面積表徵之做答分析 44 表4-1-3 約分題型於面積表徵之做答分析 47 表4-1-4 通分題型於面積表徵之做答分析 51 表4-1-5 擴分題型於離散量表徵之做答分析 56 表4-1-6 約分題型於離散量表徵之做答分析 59 表4-1-7 通分題型於面積表徵之做答分析 61 表4-1-8 擴分題型於線段表徵之做答分析 65 表4-1-9 約分題型於線段表徵之做答分析 67 表4-1-10 通分題型於線段表徵之做答分析 70 表4-2-1 無附表徵:解題情形統計表 74 表4-2-2 擴分-無附面積表徵圖題型之作答情形 75 表4-2-3 擴分-無附離散量表徵圖題型之作答情形 76 表4-2-4 擴分-無附線段表徵圖題型之作答情形 77 表4-2-5 約分-無附面積表徵圖題型之作答情形 82 表4-2-6 約分-無附離散量表徵圖題型之作答情形 83 表4-2-7 約分-無附線段表徵圖題型之作答情形 84 表4-2-8 通分-無附面積表徵圖題型之作答情形 90 表4-2-9 通分-無附離散量表徵圖題型之作答情形 91 表4-2-10 通分-無附線段表徵圖題型之作答情形 92 表4-2-11 B卷訪談六位解題錯誤學生,提供圖像表徵後的解答情形 98 表4-3-1 有無附圖像表徵測驗成績描述性統計量 99 表4-3-2 有無附圖像表徵測驗成績之分析結果(獨立樣本t檢定) 99 表4-3-3 擴分題型A卷(附圖)和B卷(無附圖)答對率 100 表4-3-4 約分題型A卷(附圖)和B卷(無附圖)答對率 100 表4-3-5 通分題型A卷(附圖)和B卷(無附圖)答對率 101 表4-3-6 有附圖像表徵測驗成績低、中、高分組 101 表4-3-7 無附圖像表徵測驗成績低、中、高分組 102   圖目錄 圖2-2-1 Lesh、Post & Behr 表徵關係圖 18 圖3-1-1 研究架構 30 圖3-1-2 研究流程 31 圖4-1-1 A卷第1題,As01面積表徵-擴分之計算過程 45 圖4-1-2 A卷第2題,As02面積表徵-約分之計算過程 48 圖4-1-3 A卷第4題,As03面積表徵-通分之計算過 52 圖4-1-4 A卷第3、4題,As04面積表徵-通分之計算過程 54 圖4-1-5 A卷第5題,As05離散量表徵-擴分之計算過程 57 圖4-1-6 A卷第6題,As06離散量表徵-約分之計算過程 60 圖4-1-7 A卷第7、8題,As07離散量表徵通分之計算過程 63 圖4-1-8 A卷第9題,As08線段表徵-擴分之計算過程 66 圖4-1-9 A卷第10題,As09線段表徵-約分之計算過程 69 圖4-1-10 A卷第11、12題,As10線段表徵-通分之計算過程 72 圖4-2-1 B卷第1題 Bs01無附圖-擴分之計算過程 78 圖4-2-2 A卷第1題面積表徵-擴分 79 圖4-2-3 Bs01 B卷第1題修正後之計算 79 圖4-2-4 Bs01 B卷第5題無附圖-擴分之計算過程 80 圖4-2-5 Bs01 B卷第9題無附圖-擴分計之算過程 81 圖4-2-6 A卷第5題附圖離散量表徵-擴分 81 圖4-2-7 A卷第9題附圖線段表徵-擴分 81 圖4-2-8 Bs01 B卷第5題修正後之計算 81 圖4-2-9 Bs01 B卷第9題修正後之計算 81 圖4-2-10 B卷第6題無附圖-約分 85 圖4-2-11 A卷第6題附圖離散量表徵-約分 85 圖4-2-12 Bs03 B卷第10題無附圖-約分之計算過程 86 圖4-2-13 Bs04B卷第2題約分之計算過程 87 圖4-2-14 A卷第10題線段表徵-約分 88 圖4-2-15 A卷第2題面積表徵-約分 89 圖4-2-16 B卷第03題 無附圖-通分之計算過程 93 圖4-2-17 B卷第03題面積表徵-約分 94 圖4-2-18 Bs06B卷第10題 無附圖-通分之計算過程 96 圖4-2-19 Bs06繪製圖像表徵 96 圖4-2-20 Bs06文字說明 96

    參考文獻
    中文文獻
    王志銘、康淑娟(2006)。等量公理前置教學活動之實踐與探究。臺灣數學教師電子期刊,8,21-40。
    江秀紋(2015)。國小學童文字表徵與線段圖表徵於分數應用問題之解題能力探討。未出版之碩士論文。國立臺中教育大學,臺中市。
    何縕琪、林清山(1994)。表徵策略教學對提升國小低解題正確率學生解題表現之效果硏究。教育心理學報,83(27),259-279。
    呂玉琴(1991)。國小學生的分數概念:1/2 VS. 2/4。國民教育,31(11/12), 10-15。
    呂玉琴(1994)。國小教師分數教學之相關知識研究。國立台灣大學科學教育研究所博士論文,未出版,臺北市。
    呂玉琴(1996)。國小教師的分數知識。臺北師院學報,9,427-459。
    李政賢(譯)(2014)。質性研究:從開始到完成。臺北市:五南。
    李素卿(2003)。認知心理學。臺北市:五南。
    張春興(1989):張氏心理學辭典。臺北市:東華書局。
    張春興(2013)。教育心理學-三化取向的理論與實踐。臺北市:東華書局。
    張奠宙、宋乃慶(2016)。數學教育概論(第三版)。高等教育出版社。
    張瑜倩、陳嘉皇(2015)。小二學生等分割概念發展之研究。2015年第七屆科技與數學教育國際學術研討會暨數學教學工作坊。國立臺中教育大學。
    教育部(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校-數學領域。臺北市:教育部。
    莊大慶(2007)。國小兒童等值分數概念發展之研究。國立屏東教育大學教育心理與輔導學系碩士論文,未出版,屏東縣。
    陳和貴(2002)。國小五年級學童分數概念學習表現及易犯錯誤類型之比較研究~以屏東縣多元文化族群為例。屏東師範學院數理教育研究所。碩士論文,未出版,屏東市。
    陳岳駿(2020)。圖像表徵對四年級學生分數表現影響之探討。未出版之碩士論文。國立臺中教育大學,臺中市。
    陳烜之(2007)。認知心理學。臺北:五南。
    陸啟華(2014)。用觀察、圖解、歸納方法學習「怎樣解題」之個案研究。未出版之碩士論文。國立臺南大學,臺南。
    彭聃齡、張必隱(1999)。認知心理學。臺北:東華。
    曾振家(2003)。國小五年級學生在動態多重表徵情境下建構分數加法概念之研究。未出版之碩士論文。國立臺南大學,臺南。
    游自達(1995)。數學學習與理解之內涵-從心理學觀點分析。初等教育集刊,3,31-45。
    游政雄(2002)。臺灣北部地區國小中年級學童分數概念之研究。國立臺北師範學院數理教育研究所碩士論文,未出版,臺北市。
    湯錦雲(2002)。國小五年級學童分數概念與運算錯誤類型之研究。屏東師範學院數理教育研究所碩士論文,未出版,屏東市。
    黃幸美 (2000)。兒童問答討論解決類比推理問題之探討。臺北市立師範學院學報,31,49-51。
    黃珂琳、邱守榕(2002)。國中數學教學活動之知識表徵-個案研究。科學教育,14,37-60。
    黃靖瑩(2003)。國小中年級學童分數概念之研究。國立臺北師範學院數理教育研究所碩士論文,未出版,臺北市。
    楊瑞智(1994)。國小五、六年級不同能力學童數學解題的思考過程。未出版之碩士論文。國立臺灣師範大學,臺北市。
    趙曉燕、鍾靜(2010)。數學表徵應用在教學上的探究。臺灣數學教師電子期刊,24,1-23。
    蔣治邦(1994)。由表徵的觀點探討新教材數與計算活動的設計。教育部臺灣省國民教育學校研習會(編)。臺北市國民學校教師研習會。
    鄭昭明(2006)。認知心理學:理論與實踐。臺北:桂冠。
    蕭龍生(1993)。數學學習與認知。特殊教育叢書第三十三輯。
    羅素貞(1996)。問題表徵與問題解決。屏東師院學報,9,149-176。

    英文文獻
    Adu-Gyamfi, K. (2007). Connections among representations: The nature of students’coordinations on a linear function task. (Ph.D. Dissertation). Raleigh,NC: North Carolina State University.
    Adu-Gyamfi, K., Bosse, M. J., & Stiff, L. V. (2012). Lost in translation: Examining translation errors associated with mathematical representations. School Science and Mathematics, 112(3), 159–170.
    Behr, M. J., & Post, T. R. (1988). Teaching rational number and decimal concepts. In T. R. Post (Eds.), Teaching mathematics in grades K-8 (pp.190-229). Boston, MA: Allyn and Bacon.
    Behr, M. J., Lesh, R., Post, T. R., & Silver, E. A. (1983). Rational- Number Concepts. In R. Lesh & M. Landau (Eds.), Acquisition of Mathematics Concepts and Processes (pp. 91-126). New York, NY: Academic Press.
    Behr, M., Lesh, R., Post, T. R., & Silver, E. A. (1983). Ration number concepts. In R.Lesh & M. Landau(Eds.), Acquistion of mathematical concepts and processes(pp.91-126). New York: Academic Press. Common Core State Standards Initiative (CCSSI). 2010. Common Core State
    Boero, P. (2001). Transformation and anticipation as key processes in algebraic problem solving. In R. Sutherland, T. Rojano, A. Bell, & R. Lins (Eds.), Perspectives on School Algebra (pp. 99-119). Dordrecht, The Netherlands: Kluwer Academic Publishers
    Bray, W. S., & Abreu-Sanchez, L. (2010). Using number sense to compare fractions:Reflect and discuss. Teaching Children Mathematics, 17(2), 90–97
    Bruner (1966). Toward a theory of instruction. Cambridge, MA: Harvard University.
    Cai, J.(2001). Improving mathematics learning: Lessons from cross-national studies of u.s and Chinese students. Phi Delta Kappan, 82(5), 400-405
    Common Core State Standards Initiative. (CCSSI) (2010). Introduction to the Common Core State Standards. Washington, DC: Author. Retrieved from http://www.corestandards.org/assets/ccssi-introduction.pdf.
    Confrey, J., Nguyen, K., Lee, K., Panorkou, N., Corley, A., & Maloney, A. (2012). TurnOnCCMath. Net: Learning Trajectoies for the K-8 Common Core Math Standards. Retrieved June 20, 2014, from https://www.turnonccmath.net.
    Cramer, K. A., & Whitney, S. (2010). Learning rational number concepts and skills in elementary classrooms: Translating research to the elementary classroom. In D. V. Lambdin, & F. K. Lester (Eds.), Teaching and learning mathematics:Translating research to the elementary classroom (pp. 15-22). NCTM.
    Cramer, K. A., & Whitney, S. (2010). Learning rational number concepts and skills in elementary classrooms: Translating research to the elementary classroom. In D. V. Lambdin, & F. K. Lester (Eds.), Teaching and learning mathematics: Translating research to the elementary classroom (pp. 15-22). NCTM.
    Davis, R.B.(劉秋木譯,1990)。數學學習。台北:五南。
    Dreyfus, T. (1991). Advanced mathematical thinking processes. In D. Tall (Ed.). Advanced mathematical thinking (pp. 25–41). Netherlands: Springer.
    Duval, R. (2000). Basic issues for research in mathematics education. The 24th International conference for the Psychology of Mathematics Education.
    Flores, A., Samson, J., & Yanik, H. B. (2006). Quotient and measurement interpretations of rational numbers. Teaching Children Mathematics, 13(1), 34–39.
    Fonger, N. L. (2011). An analytic framework for representational fluency: Algebra students’ connections between representations using CAS. In L. R. Wiest, & T. Lamberg (Eds.). Proceedings of the 33rd annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 88–96). Reno, NV: University of Nevada, Reno.
    Fuson, K. C., & Willis G. B. (1989). Second Grader’s Use of Schematic Drawings in Solving Addition and Subtaction Word Problems. Journal of Educational Psychology, 81(4), 514-520.
    Hayes J. R. (1989). The complete problem solver. (2nd ed). Hillsdale, NJ: Erlbaum.
    Johanning, D. I. (2008). Learning to use fractions: Examining middle school students’ emerging fraction literacy. Journal for Research in Mathematics Education, 39(8), 281-310.
    Kaput (1987b). Representation systems and mathematics. In Janvier(Ed.). Problems of representation in the teaching and learning of mathematics, 19-26. Hillsdale, NJ: Erlbaum.
    Lamon, S. (2012). Teaching fractions and ratios for understanding: Essential contentknowledge and instructional strategies. New York, NY: Taylor & Francis Group.
    Lesh R., Post T. & Behr, M. (1987). Representations and Translations among Representations in Mathematics Learning and problem Solving. In C. Janvier (ed.), Problems of representation in the Teaching and Learning of Mathematics (pp.33-40).Hilladale NJ: Lawrence Erlbaum Associates.
    Lobato, J. (2012). The actor-oriented transfer perspective and its contributions to educational research and practice. Educational Psychologist, 47(3), 232–247.
    Martinie, S. (2003). Thinking rationally about number and operations in the middle school. Mathematics Teaching in the Middle School. 8(6), 282-287.
    McNamara, J., & Shaughnessy, M. M. (2010). Beyond pizzas & pies: 10 essential strategies for supporting fraction sense, grades 3-5. Sausalito, CA: Math Solutions Publications
    Nathan, M. J., & Kim, S. (2007). Pattern generalization with graphs and words: A cross-sectional and longitudinal analysis of middle school students’ representational fluency. Mathematical Thinking and Learning, 9(3), 193–219.
    Nathan, M. J., & Kim, S. (2007). Pattern generalization with graphs and words: A cross-sectional and longitudinal analysis of middle school students’ representational fluency. Mathematical Thinking and Learning, 9(3), 193–219.
    Norton, A. H., & McCloskey, A. V. (2008). Modeling students' mathematics using Steffe'sfraction schemes. Teaching Children Mathematics, 15(1), 48-54.
    Perkins, D. N. (1998). What is understanding? In M. S. Wiske (Ed.). Teaching for understanding: Linking research with practice (pp. 39-57). San Francisco, CA: Jossey-Bass.
    Petit, M. M., Laird, R. E., Marsden, E. L. & Ebby. C. B., (2010). A focus on fractions: Bringing research to the classroom. New York: Routledge.
    Polya, G. (1945). How to solve it: a new aspect of mathematical method. Princenton, NJ: Princeton University Press.
    Resnick, L. B. (1987). Learning in school and out. Educational Researcher, 4, 13-20.
    Resnick, L. B.,&Ford, W.W. (1981). The psyohology of mathematics for instruction.New Jersey:Lawrence Erlbaum Associates.
    Selling, S. K. (2016). Learning to represent, representing to learn. The Journal of Mathematical Behavior, 41, 191–209.
    Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62(4), 273–296.
    Steffe, L. P., & Olive, J. (2010). Children’s fractional knowledge. New York:Springer.
    Suh, J. M., Johnston, C., Jamieson, S., & Mills, M. (2008). Promoting decimal number sense and representational fluency. Mathematics Teaching in the Middle School, 14(1), 44–50.
    Superfine, A. C., Canty, R. S., & Marshall, A. M. (2009). Translation between external representation systems in mathematics: All-or- none skill conglomerate? The Journal of Mathematical Behavior, 28, 217–236.
    Usiskin, Z. (2007). The case of the University of Chicago School Mathematics Project—secondary component. In C. R. Hirsch (Ed.), Perspectives on the design and development of school mathematics curricula (pp. 173–182). Reston, VA: National Council of Teachers of Mathematics.
    Van de Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2013). Elementary and middle school mathematics: Teaching developmentally (8th ed.). Upper Saddle River, NJ: Pearson.
    Vig, R., Murray, E., & Star, J. R. (2014). Model breaking points conceptualized. Educational Psychology Review, 26, 73–90.
    Von Glasersfeld, E. (1995). Radical constructivism: A way of knowing and learning (Vol. 6). London: Falmer.
    Webb, D. C., Boswinkel, N., & Dekker, T. (2008). Beneath the Tip of the Iceberg: Using Representations to Support Student Understanding. Mathematics Teaching in the Middle School, 14(2), 110-113.
    Woleck, K. R. (2001). Listen to their pictures; An investigation of children’s mathematical drawings. In A. A. Cuoco & F. R. Curcio (Eds.), The Roles of Representation in School Mathematics, 2001 Yearbook (pp. 215–227). Reston, VA: National Council of Teachers of Mathematics.
    Wu, H. H. (2011). Understanding numbers in elementary school mathematics (Vol.79). Providence, RI: American Mathematical Society.
    Zhang, X., Clements, M. A., & Ellerton, N. F. (2015). Conceptual mis(understandings) of fractions: From area models to multiple embodiments. Mathematics Education Research Journal, 27, 233– 261.

    QR CODE