簡易檢索 / 詳目顯示

研究生: 李宗銘
Tzong-Ming Lee
論文名稱: 非水相法合成環氧樹脂與聚醯胺醯亞胺樹脂-矽化物混成奈米複合材料及其相關特性研究
Non-Aqueous Syntheses and Properties of Epoxy and Polyamideimide Silica Hybrid Nano Composites
指導教授: 馬振基
Chen-Chi M. Ma
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 286
中文關鍵詞: 奈米混成環氧樹脂聚醯亞胺樹脂溶膠凝膠
外文關鍵詞: nano hybrid, Epoxy, polyimide, sol-gel
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以環氧樹脂橋接乙烷氧基矽與四乙烷氧基矽化合物為起始物,以非水相製程在不同有機相容催化劑作用下,經過加熱烘烤反應製備環氧樹脂-聚矽氧烷、環氧樹脂-聚矽氧烷/二氧化矽、環氧樹脂-二氧化矽及聚醯胺醯亞胺-二氧化矽混成奈米複合材料結構,探討有機系環氧樹脂或聚醯胺醯亞胺樹脂分子與無機系聚矽氧烷或二氧化矽間的氫鍵與共價鍵結作用,對最終混成奈米複合材料結構的的耐熱與機械特性影響進行探討。
    在本研究第一部份由具不同乙烷氧基矽官能基數的胺基乙烷氧基矽(aminoethoxysilane)與DGEBA環氧樹脂,合成具乙烷氧基末端基的環氧樹脂橋接烷氧基矽前驅體,並以此種前驅體透過非水相溶膠-凝膠製程,在有機酸或鹼觸媒催化下,經直接熱硬化方式,形成環氧樹脂-聚矽氧烷混成奈米複合材料結構,由29Si CP/MAS NMR鑑定分析,發現具三乙烷氧基矽官能基的Epoxy/APTES,與具雙乙烷氧基矽官能基的Epoxy/APMDS系統中,添加BF3.MEA可達到較佳無機聚矽氧烷縮合度,其聚矽氧烷縮合度可分別達到91.4%與88.0%,在具單乙烷氧基矽官能基Epoxy/APDES系統中;添加NBu4.OH可達到較高的聚矽氧烷縮合度,其聚矽氧烷縮合度可達到達到89.0%。以C13固態NMR分析不同三乙烷氧基矽官能基數所得環氧樹脂聚矽氧烷混成結構,發現Epoxy/APTES所得環氧樹脂聚矽氧烷混成結構,其T1ρH大於Epoxy/APMDS。
    由三乙烷氧基矽官能基的Epoxy/APTES與雙乙烷氧基矽官能基的Epoxy/APMDS系統,所得環氧樹脂聚矽氧烷混成結構,其熱裂解溫度Td10較純環氧樹脂二胺硬化物高約20℃,焦炭率也高於純環氧樹脂20%以上,不同三乙烷氧基矽官能基數所得環氧樹脂聚矽氧烷混成結構,其膨脹係數依序為Epoxy/APTES<Epoxy/APMDS<Epoxy/APDES, Epoxy/APTES所得環氧樹脂T鍵結聚矽氧烷混成結構,沒有明顯Tg轉折,從SEM微觀現象中,材料的平整具高均勻度,所形成之環氧樹脂-橋接聚有機矽氧烷,展現無機矽氧烷奈米微相。
    在本研究第二部份中主要透過加熱硬化方式,由具三乙烷氧基矽末端基的環氧樹脂橋接三乙烷氧基矽前驅體與四乙烷氧基矽化物在BF3MEA觸媒催化下,製備在界面上以共價鍵結方式,形成的環氧樹脂橋接矽氧烷-二氧化矽混成奈米結構,及其耐熱特性,由29Si CP/MAS NMR發現,純Epoxy-APTES 前驅體其硬化結構主要以T型取代鍵結為主,添加TEOS於環氧樹脂橋接三乙烷氧矽,經熱硬化所得的環氧樹脂橋接矽氧烷-二氧化矽混成奈米結構,其T1趨於消失,Q型取代鍵結逐漸顯現。由TEM照片可知,BF3MEA有助於SiO2粒子之生成,當BF3MEA量多時(1.0phr),SiO2生成速度較快,且顆粒尺寸較大(約200nm),粒徑分布不均一;反之,少許的BF3MEA (0.1phr)可達到較好的催化效果,生成顆粒小(約20nm)且粒徑均一的SiO2。環氧樹脂橋接矽氧烷-二氧化矽混成奈米結構,具較高熱穩定性,其Td5介於370oC~390oC,Td10介於400oC左右,焦炭率則隨著添加量的增加而提高,由38%提高至49%左右。BF3MEA觸媒的使用,可使熱裂解溫度上升,其添加量為0.2wt%效果最為顯著。環氧樹脂橋接矽氧烷-二氧化矽混成奈米結構,在BF3MEA的催化作用下其CTE值由120μm/moC降至60μm/moC。動態機械分析顯示,環氧樹脂橋接矽氧烷-二氧化矽混成奈米結構,其tanδ曲線平緩,Tg相當不明顯,storage modulus從1MPa(BF3MEA 0 phr)增至6.7MPa(BF3MEA 1.0 phr),增加了570%。
    在本研究第三部份直接在環氧樹脂環境下以四乙基矽氧烷(TEOS,Tetraethoxysilane)為起始物,在BF3MEA觸媒作用下,直接在環氧樹脂中合成具奈米尺寸的二氧化矽粉體,並透過29SiNMR,FTIR,TEM確認所合成二氧化矽粉體結構,BF3MEA觸媒在反應過程的作用機制亦一併被探討。所得具奈米粒徑的二氧化矽粉體,可藉由其粒子表面氫氧基與DGEBA環氧樹脂的側鏈氫氧基形成界面共價鍵結。所合成奈米二氧化矽粉體,其粒徑分佈隨著TEOS添加量增加而變大,加入20phrTEOS於環氧樹脂中時,所合成的奈米二氧化矽粉體其粒徑分佈在1-5nm, TEOS的添加量增加至40phr時,奈米二氧化矽粉體其粒徑分佈增加至5-40nm。添加0.5phr的BF3MEA觸媒所生成的二氧化矽粒徑小於5nm,當BF3MEA觸媒達2phr時,所生成的二氧化矽粒徑會成長到10-55nm,當BF3MEA觸媒達5phr時,可發現約200nm的凝集二氧化矽粉體。 BF3MEA觸媒所具備的Lewis acid機能,展現如同對環氧基的的催化機制,與TEOS作用時,會先與TEOS形成具正電荷錯離子後,再進一步進行SN2水解反應,形成矽烷醇(silanol)中間體後,在環氧樹脂中繼續進行縮合反應,而形成矽氧鍵結獲得二氧化矽結構。含奈米二氧化矽之DGEBA環氧樹脂與4,4□-二胺基雙苯砜4,4□-diaminodiphenysulfone (DDS),其硬化起始溫度與最大放熱峰溫度,與純DGEBA環氧樹脂與DDS硬化系統相當。由含奈米二氧化矽之DGEBA環氧樹脂與DDS之混成架橋複合結構其Tg最高可達220℃,大約比傳統純DGEBA環氧樹脂與DDS之架橋結構提升50℃。
    在本研究最後一部份在非水溶液環境下,以四乙基矽氧烷(TEOS,Tetraethoxysilane)為起始物,在BF3MEA觸媒作用下直接在聚醯胺醯亞胺樹脂中合成具奈米尺寸的二氧化矽粉體,探討所合成的二氧化矽聚醯胺醯亞胺樹脂混成複合材料的耐熱與機械物特性與混成結構的關聯性,在聚醯胺醯亞胺樹脂混成薄膜中奈米二氧化矽的存在,可以明顯的提升Tg,並降低CTE;當聚醯胺醯亞胺樹脂混成薄膜所含奈米二氧化矽含量達12%時,無法在室溫至350℃的溫度測定範圍中,發現聚醯胺醯亞胺樹脂混成薄膜的Tg,且其CTE亦降低至43ppm/℃,在空氣中烘烤所得混成薄膜,其熱劣解溫度與焦碳率比氮氣下烘烤所薄膜高,由BF3MEA觸媒催化所得奈米二氧化矽,可以提升聚醯胺醯亞胺樹脂奈米二氧化矽混成薄膜的耐熱性,含6%silica的聚醯胺醯亞胺樹脂奈米二氧化矽混成薄膜,其膠碳含量大於未使用BF3MEA觸媒催化的薄膜。隨著二氧化矽含量的提高,聚醯胺醯亞胺樹脂混成薄膜剛性模數亦隨之增加,在12%的二氧化矽含量下,其抗張模數達8.5Gpa是純聚醯胺醯亞胺樹脂薄膜的4倍以上,含6% silica所得聚醯胺醯亞胺樹脂混成薄膜,其抗張強度達200Mpa,是純聚醯胺醯亞胺樹脂薄膜的2.5倍,當silica含量提高至12%時,所得聚醯胺醯亞胺樹脂混成薄膜其抗張強度達256.5Mpa,超過純聚醯胺醯亞胺樹脂薄膜的3倍以上。


    The design of inorganic nano silica into polymer matrix to form a polymer-nanosilica hybrid has been proven to be an effective way to improve the thermal and mechanical properties of polymers. A non-aqueous synthetic method to prepare nanometer scale silica in both epoxy and polyamideimide resin has been established through direct thermal heating under catalyst in this study.
    In the first part of this study, a series of epoxy-bridged ethoxysilane precursors have been synthesized by reacting multifunctional aminoalkoxysilanes with diglycidyl ether of bisphenol-A (DGEBA) epoxy resin. The reactions between aminoethoxysilanes with DGEBA epoxy have been monitored and characterized by FTIR, 1H NMR, and 29Si NMR spectra in this study. Organometallic dibutyltindilaurate, and alkaline tetrabutylamonium hydroxide have been used as curing catalysts to investigate the thermal curing behaviors and cured properties of epoxy-bridged ethoxysilane precursors. The maximum exothermal curing temperatures of epoxy-bridged polyorganosiloxanes precursors are found to appear around the same region of 120℃ in DSC analysis. The addition of catalysts to the Epoxy/APTES precursor shows significant influence on the cured structure; however, the catalysts exhibit less influence on the cured structure of Epoxy-APMDS precursor and Epoxy/APDES precursor. Curing catalysts also show significant enhancement in increasing the thermal decomposition temperature (Td50s ) of cured network of trifunctional epoxy-bridged polyorganosiloxane (Epoxy/APTES). High Td50s of 518.8 and 613.6 in the cured hybrids of Epoxy/APTES and Epoxy/APMDS precursors are also observed, respectively. When trialkoxysilane terminated epoxy-bridged polyorganosiloxanes precursor are cured with catalyst, there is no obvious Tg transition found in the TMA analysis of cured network. The cured network of trialkoxysilane terminated epoxy-bridged polyorganosiloxanes also exhibits the lowest coefficient of thermal expansion (CTE) among the three kinds of alkoxysilane terminated epoxy-bridged polyorganosiloxanes. The organic-inorganic hybrid from epoxy-bridged polyorganosiloxanes after thermal curing process shows better thermal stability than the cured resin network of pure epoxy-diaminopropane.
    The effects of molecular structures and mobility on the thermal properties of epoxy-bridged polyorganosiloxanes have been investigated by solid-state 29Si and 13C solid state NMR in this study. The structures of epoxy-bridged polyorganosiloxanes with respect to the catalysts are quantitatively investigated. Acidic BF3.MEA shows the best catalytic effects on the formation of T3 and D2 structures in the epoxy-bridged polyorganosiloxanes from tri-functional Epoxy-APTES and di-functional Epoxy-APMDS precursors, but basic NBu4.OH has better enhancement on the formation of M1 structure in the epoxy-bridged polyorganosiloxanes from mono-functional Epoxy-APDES precursor. TEM spectra show that the epoxy-bridged polysilsesquioxanes of Epoxy-APTES precursors exhibit polysilsesquioxanes nano domain around 45-55 nm under the catalysis of dibutyltindilaurate (DBTDL), but show bigger polysilsesquioxanes nano domain around 50-150 nm under the catalysis of basic tetrabutylammonium hydroxide (NBu4.OH) in epoxy matrix after direct thermal curing process.
    In the second part of this study, epoxy-bridged polysilsesquixanes-silica hybrid has been prepared by thermally curing of epoxy-bridged ethoxysilane precursor with various amounts of tetraethoxysilane (TEOS) under the catalysis of boron trifluoridemonoethylamine (BF3MEA) in this study. The epoxy-bridged ethoxysilane precursor was synthesized by reacting one mole of DGEBA epoxy with two moles of 3-Aminopropyltriethoxysilane. BF3MEA shows the best accelerating effect on the formation of -O-Si-O-structure during thermal curing process at 150℃ based 0.1% to 0.2% of TEOS. The effects of boron trifluoride monoethylamine (BF3MEA) on the molecular structures and thermal dynamic properties of cured epoxy-bridged polysilsesquixanes silica hybrid have been investigated. Solid-state 29Si NMR have been used to compare the distribution of both silsesquixanes , T, structures and the silicate , Q, structures of the epoxy-bridged polysilsesquixanes silica hybrid structures cured with or without the catalyst of BF3MEA. Spherical nano silica has been found in the TEM spectra of the epoxy-bridged polysilsesquixanes silica hybrid cured under the catalyst of BF3MEA. Spherical nanosilica with 20 nm of diameter was obtained under 0.1% of BF3MEA catalyst in the cured epoxy-bridged polysilsesquixanes matrix. The lowest coefficient of thermal expansion of the cured epoxy-bridged polysilsesquixanes silica hybrid has been found when 0.1% weight percent of BF3MEA was used as thermal curing catalyst. The glass transition temperatures of the cured epoxy-bridged polysilsesquixanes silica hybrid are no obvious Tgs in TMA and DMA analysis.
    In the third part of this study, non-aqueous synthesis of nano silica in diglycidyl ether of bisphenol-A epoxy (DGEBA) resin has been successfully achieved in this study by reacting tetraethoxysilane (TEOS) directly in DGEBA epoxy matrix at 80℃four hours under the catalysis of boron trifluoride monoethylamine (BF3MEA). BF3MEA was proved to be an effective catalyst for the formation of nano silica in DGEBA epoxy under thermal heating process. FTIR and 29Si NMR spectra have been used to characterize the structures of nano silica from this direct thermal synthetic process. The morphology of the nano silica synthesized in epoxy matrix has been also analyzed by TEM and SEM spectra. The effects of both the concentration of BF3MEA catalyst and amount of TEOS on the diameters of nano silica in the DGEBA epoxy resin have been discussed in this study. The nano silica containing epoxy exhibited the same curing profile as pure epoxy resin during the curing reaction with 4,4□-diaminodiphenysulfone(DDS) from DSC analysis. The thermal cured epoxy-nanosilica composites from 40% of TEOS exhibited high glass transition temperature of 221℃, which was almost 50℃higher than pure DEGBA-DDS-BF3MEA cured resin network. Almost 60℃ upgrading of thermal degradation temperature has been observed in the TGA analysis of the DDS cured epoxy-nanosilica composites containing 40% of TEOS.
    In the fourth part of this study, non-aqueous synthesis of nano silica in polyamideimide(PAI) resin has been successfully achieved in this study by reacting tetraethoxysilane (TEOS) directly in PAI resin solution under the catalysis of boron trifluoride monoethylamine (BF3MEA) at 80℃. FTIR and 29Si NMR spectra have been used to observe and to characterize the structures of nano silica in the polyamideimide resin matrix. Nano silicas with diameters from 30nm to 90nm have been obtained based on different concentrations of BF3MEA catalyst. The thermal drying condition of polyamideimide-silica hybrid solution exhibits obvious correspondence to the thermal stabilities of the polyamideimide-silica hybrid film. The polyamideimide-silica hybrid films dried in air atmosphere exhibit higher thermal degradation temperatures and char yields than those dried in nitrogen atmosphere condition. The Tg of the polyamideimide-silica hybrid film containing 6% of nanosilica appears around 304℃and disappears when the concentration of the silica in the polyamideimide-silica hybrid film reaches 12 wt% from thermal mechanical analysis (TMA). The CTE of the polyamideimide-silica hybrid film also decrease to 43ppm/℃ in polyamideimide-silica hybrid film with 12 wt% of nanosilica. Strong hydrogen bonding interaction between the silanol group of nano silica and the amide groups of PAI resin has been observed in the FTIR analysis. The polyamideimide-silica hybrid film containing 12wt% of nanosilica exhibits tensile strength greater than 250Mpa, which is almost 3 times greater than pure polyamideimide film. The tensile modulus of the polyamideimide-silica hybrid film with 12 wt% naosilica is also found to reach 8.5Gpa. The mechanical strength of the polyamideimide-silica hybrid film increases with the content of naonsilica in the hybrid matrix.

    總目錄 中文摘要 I 英文摘要 V 謝誌 VIII 圖目錄 XVII 表目錄 XXVII 第一章、緒論 1 1-1 前言 1 1-2理論基礎與文獻回顧 8 1-2-1環氧樹脂 (Epoxy Resin)與聚醯胺醯亞胺樹脂材料 8 1-2-2多烷氧基矽化物水相溶膠凝膠法製程(multifunctional alkoxysilane) 18 1-2-3橋接烷氧基矽(Bridged-alkoxysilane)反應 31 1-2-4環氧樹脂-矽化物混成材料技術相關文獻 37 1-2-5聚醯亞胺/醯胺醯亞胺樹脂-矽化物混成材料技術相關文獻 59 1-3研究目的與內容 70 1-4 研究架構 73 1-5 參考文獻 78 第二章、環氧樹脂橋接乙烷氧基矽之合成及其非水相熱硬化混成結構特性探討 85 2-1 前言 85 2-2 實驗 89 2-2-1 實驗藥品 89 2-2-2 實驗儀器與設備 90 2-2-3 實驗方法 92 2-2-3-1環氧樹脂橋接乙烷氧基矽前驅物之合成製備 92 2-2-3-2 環氧樹脂橋接乙烷氧基矽前驅物之直接熱硬化反應 94 2-2-3-3 以雙胺基丙烷型硬化劑 (Diaminopropane, DAP)硬化DGEBA環氧樹脂 (Epoxy/DAP) 94 2-3-4-4分析方法 96 2-3 結果與討論 98 2-3-1環氧樹脂橋接乙烷氧基矽前驅物之合成與結構確認 98 2-3-2 環氧樹脂橋接矽氧烷前趨體硬化行為探討 108 2-3-3 環氧樹脂橋接矽氧烷硬化物結構鑑定 114 2-3-4 熱硬化環氧樹脂橋接矽氧烷熱性質探討 118 2-4 結論 124 2-5 參考文獻 125 第三章、熱硬化型環氧樹脂橋接矽氧烷混成結構與分子運動對耐熱特性影響 126 3-1 前言 126 3-2 實驗 129 3-2-1 實驗藥品 129 3-2-2 實驗儀器與設備 130 3-2-3 實驗方法 132 3-2-3-1環氧樹脂橋接烷氧基矽前趨物之合成製備 132 3-2-3-2 環氧樹脂-橋式有機矽氧烷前驅物熱硬化反應 132 3-2-3-3分析方法 134 3-3 結果與討論 136 3-3-1熱硬化環氧樹脂橋接矽氧烷結構鑑定 136 3-3-2熱硬化環氧樹脂橋接矽氧烷熱機械性質探討 141 3-3-3熱硬化環氧樹脂橋接矽氧烷動態機械性質探討 154 3-3-4熱硬化環氧樹脂橋接矽氧烷結構奈米微相形態觀察 159 3-3-5環氧樹脂橋接矽氧烷硬化物光學特性分析 164 3-4 結論 168 3-5 參考文獻 169 第四章、環氧樹脂橋接矽氧烷與四烷氧基矽酮醇鹽之熱硬化奈米混成複合材料之分子結構與熱動態機械特性 171 4-1 前言 171 4-2 實驗 174 4-2-1 實驗藥品 174 4-2-2 實驗儀器與設備 174 4-2-3 實驗方法 177 4-2-3-1實驗流程 177 4-2-3-2實驗步驟 178 4-2-3-3測試方法 178 4-3 結果與討論 181 4-3-1環氧樹脂橋接三乙烷氧矽與四乙烷氧基矽複合前驅體之製備 181 4-3-2環氧樹脂橋接三乙烷氧基矽與四乙烷氧基矽複合前驅體之熱烘烤縮合反應行為探討與結構鑑定 183 4-3-3環氧樹脂橋接矽氧烷中奈米二氧化矽形態觀察 193 4-3-4環氧樹脂橋接矽氧烷-二氧化矽混成奈米結構熱性質 198 4-3-5環氧樹脂橋接矽氧烷-二氧化矽奈米混成結構光學特性 205 4-4 結論 208 4-5 參考文獻 210 第五章、非水相法於環氧樹脂中直接合成奈米二氧化矽及其相關奈米複合硬化物熱性質 212 5-1 前言 212 5-2 實驗 214 5-2-1 實驗藥品 214 5-2-2 實驗儀器與設備 216 5-2-3 實驗方法 217 5-2-3-1 DGEBA環氧樹脂中直接合成奈米二氧化矽 217 5-2-3-2含奈米二氧化矽DGEBA環氧樹脂當量滴定 218 5-2-3-3環氧樹脂奈米二氧化矽混成複合材料製備 218 5-2-3-4環氧樹脂奈米二氧化矽混成複合材料結構確認 219 5-2-3-5環氧樹脂奈米二氧化矽混成複合材料熱性質分析 220 5-3 結果與討論 221 5-3-1 DGEBA-環氧樹脂中直接合成奈米二氧化矽之合成製程 221 5-3-2 TEOS與BF3MEA添加量對奈米二氧化矽粒徑影響 225 5-3-3 BF3MEA對合成奈米二氧化矽粉體的觸媒效應 228 5-3-4含奈米二氧化矽之DGEBA環氧樹脂混成物與4,4’-二胺基二苯砜的硬化形為探討 230 5-3-5含奈米二氧化矽之DGEBA環氧樹脂與4,4’-二胺基二苯砜硬化混成複合材料熱性質探討 233 5-3-6 含奈米二氧化矽之DGEBA環氧樹脂與4,4□-二胺基雙苯砜之硬化物TEM型態觀察 240 5-4 結論 242 5-5 參考文獻 244 第六章、非水相法合成聚醯胺醯亞胺樹脂-二氧化矽奈米混成複合材料及其特性探討 245 6-1 前言 245 6-2 實驗 249 6-2-1 實驗藥品 249 6-2-2 實驗儀器與設備 249 6-2-3 實驗方法 251 6-2-3-1聚醯胺醯亞胺樹脂合成 251 6-2-3-2聚醯胺醯亞胺樹脂直接合成奈米二氧化矽 252 6-2-3-3二氧化矽聚醯胺醯亞胺樹脂混成複合材料製備 252 6-2-3-4測試方法 253 6-3 結果與討論 254 6-3-1 非水相法在聚醯胺醯亞胺樹脂中直接合成奈米二氧化矽 254 6-3-2 BF3MEA 觸媒濃度對奈米二氧化矽粉體尺寸之影響 258 6-3-3 聚醯胺醯亞胺樹脂二氧化矽奈米混成材料之熱機械行為 260 6-3-4 熱烘烤製程對聚醯胺醯亞胺樹脂二氧化矽奈米混成材料熱裂解行為探討 263 6-3-5聚醯胺醯亞胺樹脂二氧化矽奈米混成材料之機械特性探討 267 6-4 結論 271 6-5 參考文獻 273 第七章 總結論 274 附錄-簡歷 283 附錄-著作 285 圖目錄 Figure 1-1-1、 Definition of nanotechnology and nanomaterials 3 Figure 1-1-2、Comparision of traditional composite material and nano hybrid 3 Figure 1-1-3、Design of organic-inorganic hybrid nanocomposite 4 Figure 1-1-4、Preparation route of hybrid nanocompposites 5 Figure 1-1-5、Configuration of hybrid nanocomposite 7 Figure 1-1-6、Tyical types of major nanomaterials for hybdirdconposites 7 Figure 1-2-1、Epoxy resin from epichlorohydrin process 10 Figure 1-2-2、Epoxy resin from hydrogen peroxide 10 Figure 1-2-3、Thermal curing Mechanism of epoxy resin 12 Figure 1-2-4、Cationic UV curing of epoxy resin 14 Figure 1-2-5、Effect of PH value on the polymerization pathway of aqueous silicates 20 Figure 1-2-6、Effect of sintering temperature on the structure of sol-gel materials 22 Figure 1-2-7、Definition of materials from sol-gel process 23 Figure 1-2-8、Application and products of materials fromsol-gel process 24 Figure 1-2-9、Stereo Structures of trialkoxysilane after sol-gel process 28 Figure 1-2-10、Possible structures of PSSQ 29 Figure 1-2-11、Structure performance of Polyhedral Oligometric Silsesquioxane(POSS) 30 Figure 1-2-12、Preparation of Bridged Polysilsesquioxanesfrom sol-gel process 31 Figure 1-2-13、Representative structure of bridged-trialkoxysilanes 33 Figure 1-2-14、Bridged-trialkoxysilane from metallization or Metal-halogen exchange process 34 Figure 1-2-15、Bridged-polysilsesquioxanes from hydrosilylation 35 Figure 1-2-16、Bridged-alkoxysilane from reaction of difunctional organic compound with trialkoxysilane 36 Figure 1-2-17、Intercalation and exfoliation of layered clay 39 Figure 1-2-18、Reactive epoxy monomer as intercalation agent 40 Figure 1-2-19、Effect of clay on the curing behaviors of epoxy resin 41 Figure 1-2-20、Effect of clay on StressRelaxation) 42 Figure 1-2-21、Structure of POSS with epoxy group 58 Figure 1-2-22、Synthesis and Dielectric Properties of Polyimide-Tethered Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites via POSS-diamine 60 Figure 1-2-23、Polyimide-silver hybrid from 13% silver (1,1,1-trifluoro-2,4-pentanedionato)silver- (I)-pyridine-BPDA/ODA films at four temperature/times in the cure cycle 61 Figure 1-2-24、Polyimide-Barium complex hybrid 62 Figure 1-2-25、Polyimide-POSS hybrid from Octaaminophenylsilsesquioxane (OAPS) and PMDA 64 Figure 1-2-26、Polyimide-silica hybrid from terminated alkoxysilane 65 Figure 1-2-27、Polyimide-silica hybrid from alkoxysilane with TEOS 66 Figure 1-2-28、Polyimide-silica hybrid from TMOS sol-gel process 67 Figure 1-2-29、Polyamideimide-silicone/silica hybrid from terminated silicone with TMOS 69 Figure 1-2-30、Polyamideimide-PSSQ hybrid from sol gel process of side chain alkoxysilane 69 Figure 1-2-31、Polyamideimide-silica hybrid from sol gel process of terminated alkoxysilane 70 Figure 1-3-1、Preparation of hybrid nanocomposite from traditional sol-gel process 72 Figure 1-4-1、Syntheses of epoxy-bridged ethoxysilane precursors 75 Figure 1-4-2、Non-aqueous thermal condensation of epoxy-bridged ethoxysilane precursors under catalyst 75 Figure 1-4-3、Non-aqueous thermal condensation of epoxy-bridged ethoxysilane precursors under catalyst 76 Figure 1-4-4、Non-aqueous synthesis of nano silica in epoxy matrix and thermal properties of their cured hybrid composites. 77 Figure 1-4-5、Non-aqueous synthesis of nano silica in polyamideimide resin matrix and thermal properties of their hybrid composite. 78 Figure 2-1、Flame retarding epoxy-PSSQ hybrid nanocompoite from aqueous sol-gel process 86 Figure 2-2、FTIR spectra of the epoxy reacting with APTES at the beginning, the final step and completed cured Epoxy-APTES bridged polyorganosiloxane 100 Figure 2-3、FTIR spectra of epoxy reacting with APTES at different reaction times 101 Figure 2-4、FTIR spectra of epoxy reacting with APMDS at different reaction times 102 Figure 2-5、FTIR spectra of epoxy reacting with APDES at different reaction time 103 Figure 2-6、1H NMR spectra of Reactive Epoxy-APTES precursor 105 Figure 2-7、1H NMR spectra of Reactive Epoxy-APMDS precursor 106 Figure 2-8、1H NMR spectra of Reactive Epoxy-APDES precursor 107 Figure 2-9、FTIR spectra of curing Reactive Epoxy-APTES precursor at different Curing Times 109 Figure 2-10、FTIR spectra of curing Reactive Epoxy-APMDS precursor at different reaction times 109 Figure 2-11、FTIR spectra of curing Reactive Epoxy-APDES precursor at different curing times 110 Figure 2-12、FTIR spectra of curing Reactive Epoxy-APTES precursor with DBTDL at different curing times 110 Figure2-13、FTIR spectra of curing Reactive Epoxy-APTES precursor with NBu4OH at different curing times 111 Figure 2-14、FTIR spectra of curing Reactive Epoxy-APTES precursor with BF3.MEA at different curing times 111 Figure 2-15、DSC analysis on the curing behaviors of Epoxy-DAP mixture and Reactive Epoxy-APTES precursor with a heating rate of 10℃/min under nitrogen 113 Figure 2-16、DSC analysis on the curing behaviors of Reactive Epoxy-APTES precursor, Reactive Epoxy-APMDS precursor and Reactive Epoxy-APDES precursor with heating rate of 10℃/min under nitrogen 113 Figure 2-17、29Si CP/MAS NMR spectra of Epoxy/APTES without catalyst, and with DBTDL, NBu4.OH and BF3.MEA 116 Figure 2-18、29Si CP/MAS NMR spectra of Epoxy/APMDS without catalyst, and with DBTDL, NBu4.OH and BF3.MEA 116 Figure 2-19、29 Si CP/MAS NMR spectra of of Epoxy/APDES without catalyst, and with DBTDL, NBu4.OH and BF3.MEA 117 Figure 2-20、TGA Curves of Epoxy/APTES without catalyst, and with DBTDL, NBu4.OH and BF3.MEA 120 Figure 2-21、TGA Curves of Epoxy/APMDS without catalyst, and with DBTDL, NBu4.OH and BF3.MEA 120 Figure 2-22、TGA curves of Epoxy/APDES without catalyst, and with DBTDL, NBu4.OH and BF3.MEA 121 Figure 2-23、Comparison of TGA curves of Epoxy/APTES, Epoxy/APMDS, Epoxy/APDES and Epoxy/DAP 121 Figure 2-24、Comparison of the chard yield of Epoxy/APTES, Epoxy/APMDS, Epoxy/APDES and Epoxy/DAP 123 Figure 3-1、Epoxy polysilsesquioxane hybrids from epoxy-bridged trialkoxysilanes 126 Figure 3-2、29Si CP/MAS NMR spectra of Epoxy/APTES without catalyst, and with DBTDL, NBu4.OH and BF3.MEA 139 Figure 3-3、29Si CP/MAS NMR spectra of Epoxy/APMDS without catalyst, and with DBTDL, NBu4.OH and BF3.MEA 139 Figure 3-4、29 Si CP/MAS NMR spectra of of Epoxy/APDES without catalyst, and with DBTDL, NBu4.OH and BF3.MEA 140 Figure 3-5、TMA curve of Epoxy/APTES, Epoxy/APMDS and Epoxy/APDES without catalyst 145 Figure 3-6、TMA curve of Epoxy/APTES, Epoxy/APMDS and Epoxy/APDES with DBTDL 145 Figure 3-7、TMA curve of Epoxy-APTES, Epoxy/APMDS and Epoxy/APDES with NBu4OH 146 Figure 3-8、TMA curve of Epoxy/APTES, Epoxy/APMDS and Epoxy/APDES with BF3.MEA 146 Figure 3-9、CTE 1 of Epoxy/APTES, Epoxy/APMDS and Epoxy/APDES systems 148 Figure 3-10、CTE 2 of Epoxy/APTES, Epoxy/APMDS and Epoxy/APDES systems 148 Figure 3-11、ΔCTE of Epoxy/APTES, Epoxy/APMDS and Epoxy/APDES systems 149 Figure 3-12、The 13C CP/MAS NMR spectra of Epoxy/APTES 150 Figure 3-13、The 13C CP/MAS NMR spectra of Epoxy/APMDS 151 Figure 3-14、The 13C NMR spectra of Epoxy/APTES at various contact times 152 Figure 3-15、The 13C NMR spectra of Epoxy/APMDS at various contact times 152 Figure 3-16、(a) The storage modulus and (b) tanδof Epoxy/APTES, Epoxy/APMDS, Epoxy/APDES and Epoxy/DAP 156 Figure 3-17、tanδof Epoxy/APTES without catalyst, and with DBTDL and BF3.MEA 157 Figure 3-18、tanδof Epoxy/APMDS without catalyst, and with DBTDL, NBu4.OH and BF3.MEA 157 Figure 3-19、Tanδof Epoxy/APDES without catalyst, and with DBTDL, NBu4.OH and BF3.MEA 158 Figure 3-20、SEM Microphotographs of Epoxy/APTES system with various catalysts 161 Figure 3-21、 SEM Microphotographs of Epoxy/APMDS and Epoxy/APDES system without catalyst 162 Figure 3-21、The elements of Epoxy/APTES system without catalyst 163 Figure 3-22、The Si mapping of Epoxy/APTES system without catalyst 163 Figure 3-23、Appearance of Epoxy/APTES without catalyst 164 Figure 3-24、UV spectrum of Epoxy/APTES without catalyst 165 Figure 3-25、UV spectrum of Epoxy/APTES with DBTDL 165 Figure 3-26、UV spectrum of Epoxy/APTES with NBu4.OH 166 Figure 3-27、UV spectrum of Epoxy/APTES with BF3.MEA 166 Figure 3-28、UV spectrum of Epoxy/APMDS without catalyst 167 Figure 3-29、UV spectrum of Epoxy/APDES without catalyst 167 Figure 4-1、Epoxy-bridged polysilsesquioxane/silica hybrid from aqueous sol-gelprocess. 173 Figure 4-2、Experimental design for the studies of Epoxy-bridged polysilsesquioxane/silica hybrid nano composite from direct thermal curing process 177 Figure 4-3、DSC analyses on the curing behavior of Epoxy-APTES-TEOS-BF3MEA 184 Figure 4-4、FTIR spectra changes of epoxy-bridged polysilsesquixanes nano silica hybrid under the catalysis of BF3MEA catalyst during thermal curing process: 186 Figure 4-5、FTIR spectra changes of epoxy-bridged polysilsesquixanes nano silica hybrid without BF3MEA catalyst during thermal curing process 187 Figure 4-6、29Si CP/MAS NMR spectra of thermally cured Epoxy-APTES-TEOS precursors without BF3MEA 191 Figure 4-7、29Si CP/MAS NMR spectra of thermally cured Epoxy-APTES-TEOS with various contents of BF3MEA catalyst 192 Figure 4-8、 (a) The photograph of the Si mapping region by SEM and (b) EDS analysis of thermally cured Epoxy-APTES-TEOS hybrid nanosilica network. 193 Figure 4-9、The TEM photograph of analysis of thermally cured Epoxy-APTES-TEOS hybrid nanosilica network without the addition of BF3MEA catalyst. 195 Figure 4-10、The TEM photograph of thermally cured Epoxy-APTES-TEOS hybrid nanosilica network with 0.1phr BF3MEA 195 Figure 4-11、The TEM photograph of thermally cured Epoxy-APTES-TEOS hybrid nanosilica network with 0.2phr BF3MEA 196 Figure 4-12、The TEM photograph of thermally cured Epoxy-APTES-TEOS hybrid nanosilica network with 0.5phr BF3MEA 196 Figure 4-13、The TEM photograph of thermally cured Epoxy-APTES-TEOS hybrid nanosilica network with 1.0phr BF3MEA 197 Figure 4-14、CTE of thermally cured Epoxy-APTES-TEOS with various contents of BF3MEA catalyst. 199 Figure 4-15、CTE of thermally cured Epoxy-APTES-TEOS with respect to the amount of TEOS. The BF3MEA catalyst is 0.1phr. 200 Figure 4-16、The storage modulus of thermally cured epoxy-bridged ethoxysilane with 10 phr of TEOS under various amount of BF3MEA 204 Figure 4-17、The tanδ of thermally cured epoxy-bridged ethoxysilane with 10 phr of TEOS under various amount of BF3MEA 204 Figure 4-18、Transparency of thermally cured epoxy-bridged ethoxysilane with various amount of TEOS under catalyzation of 0.2phr of BF3MEA 205 Figure 4-19、UV-VIS spectra of of thermally cured epoxy-bridged ethoxysilane with various amount of TEOS under catalyzation of 0.2phr of BF3MEA 207 Figure 4-20、UV-VIS spectra of thermally cured epoxy-bridged ethoxysilane with 10 phr of TEOS under various amount of BF3MEA 207 Figure 5-1、Epoxy-silica hybrid nanocomposite from aqueous sol-gel process 213 Figure 5-2、FTIR spectra characterization on the structure changes of the nanosilica in-situ synthesized in DGEBA-BF3MEA epoxy with respect to various reaction periods 221 Figure 5-3、Si29 Spectra characterization on the structure changes of nano silica in-situ synthesized in DGEBA-BF3MEA epoxy matrix at 80ºC under various reaction times 224 Figure 5-4、SEM and TEM microphotograph of the nano-silica synthesized from 20 phrs of TEOS in DGEBA-BF3MEA after 4 hour of reaction time 226 Figure 5-5、SEM and TEM microphotograph of the nano-silica synthesized from 40 phrs of TEOS in DGEBA-BF3MEA after 4 hour of reaction time. 226 Figure 5-6、Microphotograph of nano silica synthesized from 20 phrs of TEOS in DGEBA epoxy under various amounts of BF3MEA catalyst 227 Figure 5-7、Curing behaviors of DGEBA-nanosilica epoxy with DDS curing agent 231 Figure 5-8、Comparison of FTIR spectra on the structures between the uncured and cured DGEBA-nanosilica-DDS composites 234 Figure 5-9、Glass transition temperature (Tg) of the DGEBA-nanosilica-DDS composites with respect to various amounts of TEOS under nitrogen atmosphere with heating of 10℃/min. 235 Figure 5-10、Hydrogen bonding shift on the –OH stretching vibration in the FTIR spectra of DGEBA-nanosilica-DDS composites 235 Figure 5-11、Thermal degradation temperatures with respect to the DGEBA-nanosilica-DDS composites from various amounts of TEOS under nitrogen atmosphere from RT to 800 ℃ with heating of 20℃/min. 237 Figure 5-12、Thermal degradation temperatures of the DGEBA-nanosilica-DDS composites with respect to various amounts of TEOS under air atmosphere from RT to 800 ℃ with heating of 20℃/min 237 Figure 5-13、TEM microphotograph of the DDS cured DGEBA-nanosilica-DDS composites from 20 phrs of TEOS 241 Figure 5-14、TEM microphotograph of the DGEBA-nanosilica-DDS composites from 40 phrs of TEOS 241 Figure 6-1、FTIR spectra of polyamideimide-silicate hybrids synthesized from polyamideimide-TEOS with or without the catalysis of BF3MEA at 80°C for various reaction time. 257 Figure 6-2、29Si NMR spectra characterization on the formation of silicate structure during the synthesis of polyamideimide-silica hybrid with or without the catalyst of BF3MEA at 80ºC for various reaction time 258 Figure 6-3、 Effect of BF3MEA catalyst concentration on the diameters of nanosilica in polyamideime-silica hybrid during the non-aqueous synthesis from polyamideimide-TEOS system 259 Figure 6-4、Effect of nanosilica content on the thermal mechanical properties of Polyamideimide-silica hybrid 261 Figure 6-5、FTIR analysis on the hydrogen bonding interaction between the nanosilica and polyamideimide molecules in polyamideimide hybrid 262 Figure 6-6、Effects of curing environment on the thermal degradation temperature of polyamideimde-silica hybrid; 264 Figure 6-7、Effect of silica contents on the thermal degradation temperatures of polyamideimde-silica hybrid 265 Figure 6-8、Comparison on the thermal stability of AI-silica hybrid prepared with or without the catalysis BF3MEA. 266 Figure 6-9、Effect of BF3MEA concentration on the tensile strength of polyamideimide-silica hybrid film 268 Figure 6-10、Effect of silica content on the tensile strength and elongation of polyamideimide hybrid film 269 表目錄 Table 1-2-1、Representative trialkoxysilanes 26 Table 1-2-2 Tg Values of Epoxy/POSS Composites 53 Table 1-2-3 Flexural Strengths (FS) and Flexural Moduli (FM) of Epoxy/POSS Composites and Epoxy/PPSQ Blends 54 Table 1-2-4 Effect of epoxide equivalent weight of epoxy resin on thermalproperties of epoxy-PSSQ hybrid composites 55 Table 2-1 Characteristic FTIR absorption peaks of functional groups 99 Table 2-2 5%、10% weight loss and char yield of Epoxy/APTES, Epoxy/APMDS and Epoxy/APDES without catalyst and with catalyst and Epxoy/DAP 122 Table 3-1 Integrated 29Si CP/MAS NMR of (a) T distributions of Epoxy/APTES system, (b) D distribution of Epoxy/APMDS system and (c) M distribution of Epoxy/APDES 141 Table 3-2 Tg, CTE 1, and CTE 2 of Epoxy/APTES, Epoxy/APMDS and Epoxy/APDES without catalyst, and with DBTDL, NBu4.OH and BF3.MEA and Epoxy/DAP 147 Table 3-3 T1ρH spin lock relaxation time measured at 300K of corresponding segmental motions of Epoxy/APTES and Epoxy/APMDS 153 Table 3-4 The Tg data measured by TMA and DMA and the degree of condensation of Epoxy/APMDS and Epxoy/APDES systems 158 Table 4-1 Integrated 29Si CP/MAS NMR of T distribution and Q distribution 192 Table 4-2 Mean particle size of Epoxy-APTES-TEOS with various contents of BF3MEA catalyst 197 Table 4-3 Thermal degradation temperature and char yield of thermally cured epoxy-bridged ethoxysilane with 10 phr of TEOS under various amount of BF3MEA 202 Table 4-4 Thermal degradation temperature and char yield of thermally cured epoxy-bridged ethoxysilane with various amount of TEOS under catalyzation of 0.2phr of BF3MEA 202 Table 5-1. Reaction composition and silica content of DEGBA-DDS-BF3MEA-nanosilica hybrid 223 Table 5-2. TGA analysis on the DGEBA-nanosilica-DDS composites containing various quantities of TEOS 239 Table 6-1. Reaction composition and silica content of Polyamideimide-silica hybrid 254 Table 6-2. Mechanical strength of Polyamideimide hybrid with various content of nanosilica 270

    1. 馬振基,”高分子複合材料(上)”,正中書局,1995.
    2. “Composite Materials Handbook”, McGraw-Hill Book Co. New York, N.Y., 1984
    3. “Nanotechnology”, Springer-Verlag New York, Inc., 1999.
    4. Michael Wilson, et., “Nanotechnology- basic science and emerging technologies”, University of New South Wales Press Ltd, 2002,
    5. Juergen M. Plitzko, et., “Nanostructured Interfaces”, MRS Symposium Proceeding Vol. 727, 2002
    6. Hari Singh Nalwa, Handbook of Orgainc-inorganic Hybrid material and Nanocomposites”, American Scientific Publishers, 2002.
    7. Mitsue Koizumi, et., “Advanced Technology of Nano-materials”, CMC, 2001( 日文)
    8. Kajiwara Meisetsu, et., “ Development and Application of Inorganic-organic Hybrid Material”, CMC, 2001.( 日文)
    9. 日本化學會,” 無機有機Nano複合物質”, 學會出版Center, 1999.(日文)
    10. 溶膠-凝膠, 有機、無機混成高分子材料發展趨勢,化工資訊, 1992, 12
    11. 作花濟夫,”Sol-Gel 法之科學”,Agune承風社,1988.(日文)
    12. 垣內弘,”New Epoxy Resin”株式會社昭晃堂,1985. ( 日文)
    13. 橋本邦之,”Epoxy Resin”,日刊工業新聞社,1969( 日文)
    14. 新保正樹,”Epoxy Resin Handbook”, 日刊工業新聞社,1987(日文)
    15. Clayton A. May, “Epoxy Resins – Chemistry and Technology”, Marcel Dekker, 1988.
    16. 今井淑夫,橫田力男,” 聚醯亞胺的基礎與應用”,New Technology New Science, NTS Inc., 2002, (日文)
    17. Malay K. Ghosh, K. L. Mittal, “Polyimides-fundamentals and applications”, Marcel Dekker, Inc., New York, U. S. A, 1996
    18. G. E.Bower, L.W. Frost, J. Polym. Sci., Part A: Polym. Chem. Ed., 1, 3135, (1963)
    19. K. Kurita, H. Itoh, and Y. Iwakura, E.Bower, L.W. Frost, J. Polym. Sci., Part A: Polym. Chem. Ed., 16, 779, (1978)
    20. M. Fujimoto, T.Oishi, M.Momio, and S. Murata, Nippon Kagaku Kaishi, 9,1465 (1976)
    21. Y. Imai, N. M. Maldar, and M. Kakimoto, J. Polym. Sci., Part A: Polym. Chem. Ed., 23, 2077, (1985)
    22. M. Kakimoto, R. Akiyama, Y. S. Negi, and Y. Imai, J. Polym. Sci., Part A: Polym. Chem. Ed., 26, 99, (1988)
    23. W,Wrasidlo and J. M. Augl, J. Polym. Sci., Part A: Polym. Chem. Ed., 7, 321, (1969)
    24. C. P. Yang, and S. H. Hsiao, Makromol. Chem., 190, 2119(1989)
    25. C. P. Yang, and Y. Y. Yen, J. Polym. Sci., Part A: Polym. Chem. Ed., 30, 1855, (1992)
    26. Y. Oishi, M. Kakimoto, and Y. Imai. J. Poly. Sci., Part A, Polym. Chen., 29, 1925 (1991)
    27. Y. Imai, and T. Takahashi, Kobunshi Kagaku, 30, 442(1973)
    28. Y. Oishi, M. Kakimoto, and Y. Imai, Macromolecules, 20, 703 (1987)
    29. C. Jeffery Brinker, “Sol-Gel Science”, ACADEMIC PRESS, INC. 1991
    30. Ralph K. Iler, “ The chemistry of Silica”, A Wiley-Interscience Publication, John Wiley & SONS. 1994
    31. Horacio E. Bergna,“The Colloid Chemistry of Silica”, American Chemistry Society, Washinton , DC 1994.
    32. Edwin P. Plueddemann, “Silane Coupling Agent”,second edition, Plenum Press, New York and London, 1991
    33. Brown. Jr., J.F; Vogt, Jr., L. H.; Prescott, P. I. J. Am, Chem. Soc., 86, 1120-1125, 1964
    34. Brown. Jr., J.F; Vogt, Jr., L. H.; Am, Chem. Soc., 87, 4313-4317, 1965
    35. Brown. Jr., J.F; Am, Chem. Soc., 87, 4317-4324, 1965
    36. R. H. Baney, M. Ttoh, Sakakibara, T. Suzuki, Chem. Rev., 95, 1409, 1995
    37. Charles U. Pittman, Jr., Gui-Zhi Li, Hanli Ni, Macromol. Symp. 196, 301-325, 2003
    38. K. J. Shea and D. A. Loy, Chem. Mater. , 13, 3306-3319, 2001
    39. K. J. Shea and D. A. Loy, Webster O.W., J. Am. Chem. Soc., 114, 6700, 1992
    40. Small. J. H.; K. J. Shea, D. A. Loy, J. Non-Cryst. Solids, 160, 234, 1993
    41. Corriu, R. J. P.; Moreau, J. J. E.; Thepot, P.; Man. M. W. C., Chem. Mater. , 4, 1217, 1992
    42. Corriu, R. J. P.; Moreau, J. J. E.; Thepot, P.; Man. M. W. C., 6, 640, 1994
    43. Corriu, R. J. P.; Moreau, J. J. E.; Thepot, P.; Man. M. W. C., Chem. Mater., 4, 987, 1994
    44. Oviatt. H.W., Jr.; Shea. K. J.; Small, J. H. Chem. Mater., 5, 943, 1993
    45. Loy, D. A. ; Jamison, G.M.; B. M.; Russick, E. M.; Prabaker, S.;Shea, K. J. Non-Cryst. Solids, 44, 186, 1995
    46. Bezombes, J. P.; Chuit, C., Corriu. R. J. P.; Reye. C. Can, J. Chem. 78, 1519,2000
    47. Corriu. R. J. P.; Hoarau, C., Mehdi, A., Reye. C., Chem. Commun., 1, 71, 2000
    48. Bezombes, J. P.; Chuit, C., Corriu. R. J. P.; Reye. C. Can, J. Mater. Chem. 9, 1727, 1999
    49. Loy, D. A., Carpenter, J. P., Yamanaka, S. A., Mcclain, M. D., Greaves. J., Hobson, S., Shea, K. J., Chem. Mater., 10, 4129, 1998
    50. Gemeinhardt, G, C., Young, S. K., Mauritz, K. A., Polym. Prepr., 39, 379, 1998
    51. Guizard, C.; Lacan, P. New J. Chem. 18, 1097, 1994
    52. Shaltout, R. M., Loy. D. A., McClain, M. D., Prabaker, S. Greaves, J., Shea, K. J., Polym. Prepr., 41, 508, 2000
    53. Ribeiro, A. O., Biazzotto, J. C., Serra, O. A. J. Non-Cryst. Solid, 273, 198, 2000
    54. Corriu, R. J. P., Hesemann, P., Lanneau, G. F., Chem. Commun., 15, 1845, 1996
    55. Lindner, E., Jaeger, A., Schneeler, T.; Mayer, H. A., Chem. Mater., 9, 81, 1997
    56. Lindner, E., Jaeger, A., Schneeler, T.; Mayer, H. A., Bertagnolli, H., Ertel, T. S., Chem. Mater., 9, 1524, 1997
    57. Moran, M., Cuadrado, I., Pineda, L., Masaguea, J. R, Losada, J., Inorg. Chim. Acta, 169, 119, 1990
    58. Jeng–Yueh Shieh, Tzong–Hann Ho, and Chun–Shan Wang, “Aminosiloxane–Modified Epoxy Resins as Microelectronic Encapsulants ”, Die Angewandte Makromolekulare Chemie., 1995, 224, 21
    59. Shyue – Tzoo Lin and Steve K. Huang, “Study of Curing Kinetics of Siloxane - Modified DGEBA Epoxy Resins”, J. Appl. Polym. Sci., 1996, 62, 1641
    60. Tsung – Han Ho and Chun – Shan Wang, “ Modification of Epoxy Resins with Polysiloxane Thermoplastic Polyurethane for Electronic Encapsulation I. ”, Polymer, 1996, 37, 2733
    61. Gerhard Schcttner, Chem. Mater. 13, 3422, 2001
    62. Andre Lee, Joseph D, Lichtenhan, J. Applied Polymer Science, 73, 1993, 1999
    63. Ole Becker, Yi-Bing Cheng, Russell J. Varley, George P. Simon, Macromolecules, 36, 1616, 2003
    64. Jong Hyun Park, Sadhan C. Jana, Macromolecules, 36, 2758, 2003
    65. Dong Choo Lee, Lee Wook Jang, J. Applied Polymer Science, 68, 1997, 1998
    66. N. Artzi, Y, Nir, M. Narkis, A. Siegmann, J. Polymer Science, Part B, Polym. Phy., 40, 1741, 2002
    67. Lu Jiankun, Ke Yucai, Qi Zongneng, Yi Xiao-su, J. Polymer Science, Part B, Polym. Phy., 39, 115, 2001
    68. Yucai Ke, Jiankun Lu, Xiaosu Yi, Jian Zhao, Zngneng Qi, J. Applied Polymer Science, 78, 808, 2000
    69. Dow A. Rogers, “ Epoxy-substituted organo Silicon Compounds and Method for Preparing the Same ”, U. S. Patent 2, 1959, 883, 395
    70. E. M. Yorkgitis, N. S. Eiss, G. L. Wilkes and J. E. McGrath, “ Siloxane Modified Epoxy Resins ”, Advances in Polymer Science, Epoxy Resins and Composites I, 1985, No. 72, 80
    71. J. L. Hedrick, B. Haidar, T. P. Russell and D. C. Hafer, “ Synthesis and Properties of Segmented and Block Poly (Hydroxy – Ether - Siloxane) Copolymers ”, Macromolecules, 1988, 21, 1967
    72. J. V. Crivello, and J. L. Lee, “The Synthesis Characterization and Photoinitiated Cationic Polymerization of Silicone – Containing Epoxy Resins”, J. Polym. Sci., Part A, 1990, 28, 479
    73. Yamashita Kiichi, Shimbo Masaki, Kobunshi Ronbunshu (日本高分子論文集), 1990, 47, 185
    74. Kiichi Hasegawa, Hiroshi Inoue, Akinori Fukuda and Yasushi Arita, “ Preparation and Curing Behavior of Siloxane – Containing Epoxy Resins”, J. Polym. Sci., Part A, 1992, 30, 2045
    75. Ochi Mitsukazu, Katayama Toshio, Mimura Kenji, Yamana Hidekazu, Kobunshi Ronbunshu (日本高分子論文集), 1993, 50, 621
    76. Philip A. Fonkalsrud, “ Polyamide – Epoxy – silicone Modified Coating Compositions ”, U. S. Patent 5, 1994, 317, 046
    77. Tzong – Hann Ho and Chun – Shan Wang, “Modification of Epoxy Resins by Hydrosilation for Electronic Encapsulation Application”, J. Appl. Polym. Sci., 1994, 54, 13
    78. Tzong – Hann Ho and Chun – Shan Wang, “Low – Stress Encapsulants by Vinylsiloxane Modification”, J. Appl. Polym. Sci., 1994, 51, 2047
    79. Jiangdong Tong, Ruke Bai, Yingfang Zou, Caiyuan Pan, and Shigeki Ichimura, Flexibility Improvement of Epoxy Resins by Using Polysiloxanes and Their Derivatives ”, J. Appl. Polym. Sci., 1994, 52, 1373
    80. Jeng – Yueh Shieh, Tzong – Hann Ho and Chun – Shan Wang, “ Aminosiloxane – Modified Epoxy Resins as Microelectronic Encapsulants ”, Die Angewandte Makromolekulare Chemie., 1995, 224, 21
    81. Shyue – Tzoo Lin and Steve K. Huang, “Study of Curing Kinetics of Siloxane - Modified DGEBA Epoxy Resins”, J. Appl. Polym. Sci., 1996, 62, 1641
    82. Tsung – Han Ho and Chun – Shan Wang, “ Modification of Epoxy Resins with Polysiloxane Thermoplastic Polyurethane for Electronic Encapsulation I. ”, Polymer, 1996, 37, 2733
    83. Tsung – Han Ho, Jenn – Hwa Wang and Chun – Shan Wang, “ Modification of Epoxy Resins with Polysiloxane TPU for Electronic Encapsulation II. ”, J. Appl. Polym. Sci., 1996, 60, 1097
    84. Ming – Chun Lee, Tsung – Han Ho and Chun – Shan Wang, “Synthesis of Tetrafunctional Epoxy Resins and Their Modification with Polydimethylsiloxane for Electronic Application”, J. Appl. Polym. Sci., 62, 217 (1996).
    85. Jeng – Yueh Shieh, Tsung – Han Ho and Chun – Shan Wang, “Synthesis and Modification of Trifunctional Epoxy Resin with Amine Terminated Polydimethylsiloxanes for Semiconductor Encapsulation Application”, Journal of Polymer Research, 1996, 3, 125
    86. Po-Hou Sung, Chien-Yang Lin, “Polysiloxane modified Epoxy Polymer Network – II. Dynamic Mechanical Behavior of Multicomponent Graft-IPNs (Epoxy / Polysiloxane / Poly propylene Glycol)”, Eur. Polym. J., 1997, 33, 231
    87. Shyue-Tzoo Lin, Steve K. Huang, “Thermal Degradation Study of Siloxane – DGEBA Epoxy copolymers”, Eur. Polym. J., 1997, 33, 365
    88. S. S. Lee, S. C. Kim, “Morphology and Properties of Polydimethyl siloxane – Modified Epoxy Resin”, J. Appl. Polym. Sci., 1997, 64, 941
    89. Emel Yilgor and Iskender Yilgor, “1, 3-bis (aminopropyl)tetra methyldisiloxane Modified Epoxy Resins : Curing and Characterization ”, Polym., 1998, 39, 1691
    90. W.C. Shih and C.C.M. MA, “Tetrafunctional Aliphatic Epoxy. (I) Synthesis and Characterization”, J.of Appl. Poly. Sci., 1998, 69, 51-58
    91. “改質環氧樹脂之合成方法及韌性、熱穩定性的特性研究”, 施文昌, 國立清華大學博士論文, 1998
    92. W.C. Shih and C.C.M. MA, “Polydimethylsiloxane Containing Isocyanate Group Modified Epoxy Resin: Curing, Characterization and Properties”, J. Appl. Polym. Sci., 73, 2739-2747 (1999)
    93. “聚矽氧烷改質環氧樹脂之硬化與增韌研究”, 陳宏德, 國立清華大學碩士論文, 1997
    94. M. Ochi, R. Takahashi, A. Terauchi, “Phase structure and mechanical and adhesion properties of epoxy/silica hybrids”, Polymer, 2001, 42, 5151-5158
    95. “聚矽氧烷樹脂之合成與其聚摻合物之特性研究”, 王豐益, 國立清華大學博士論文, 2001
    96. Gui Zhi Li, Lichang Wang, H. Toghiani, Tyrone L. Daulton, Kiyohito Koyama, and Charles U. Pittman, Jr. “Viscoelastic and Mechanical Properties of Epoxy/Multifunctional Polyhedral Oligomeric Silsesquioxane Nanocomposites and Epoxy/ Ladderlike Polyphenylsilsesquioxane Blends”, Macromolecules 2001, 34, 8686-8693
    97. Jiwon Choi, Jason Harcup, Albert F. Yee, Quan Zhu, and Richard M. Laine “Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes”, J. Am. Chem. Soc., 2001, 123, 11422
    98. J. C. Cabanelas, B. Serrano, J. Gonzalez-Benito, J. Bravo, J.Baselag, ”Morphology of Epoxy/Polyorganosiloxane Reactive Blends”, Macromolecular Rapid Communication, 2001, 22, 694-699.
    99. Chin-Lung Chiang, Chen-Chi M. Ma, “Synthesis, characterization and thermal properties of novel epoxy containing silicon and phosphorus nanocomposites by sol–gel method”, European Polymer Journal, 2002, 38, 2219–2224
    100. Chin-Lung Chiang, Feng-Yih Wanga, Chen-Chi M. Ma, Hey-Rey Changb, “Flame retardance and thermal degradation of new epoxy containing silicon and phosphorous hybrid creamers prepared by the sol-gel method”, Polymer Degradation and Stability, 2002, 77, 273–278
    101. S. Ananda Kumar, T. S. N. Sankara Narayanan, “Thermal properties of siliconized epoxy interpenetrating coatings”, Progress in Organic Coatings, 2002, 45, 323–330
    102. G.-M. Kim, H. Qin, X. Fang, F. C. Sun, P. T. Mather, ” Hybrid Epoxy-Based Thermosets Based on Polyhedral Oligosilsesquioxane: Cure Behavior and TougheningMechanisms”, Journal of Polymer Science Part B-Polymer Physics, 2003, 41 (24), 3299-3313
    103. Chin-Lung Chian, Chen-Chi M. Ma, Feng-Yih Wang, Hsu-Chiang Kuan, “Thermo-oxidative degradation of novel epoxy containing silicon and phosphorous nanocomposites”, European Polymer Journal, 2003, 39, 825–830
    104. Jiwon Choi, Seung Gyoo Kim, and Richard M. Laine, ”Organic/Inorganic Hybrid Epoxy Nanocomposites from Aminophenylsilsesquioxanes”, Macromolecules, 2004, 37, 99-109
    105. M. OCHI, R. TAKAHASHI, Journal of Polymer Science: Part B: Polymer Physics, Vol. 39, 1071–1084, 2001
    106. Libor Mate, Jose Plestil, Karel Dusek, Journal of Non-Crystalline Solids, 226, 114, 1998
    107. J. Macan., H. Ivankovi, M. Ivankovi, H.J. Mencer, Thermochimica Acta, 414, 219, 2004
    108. Gingo Ho Hsiue, Ying Ling Liu, Hsin Hao Liao, Journal of Polymer Science: Part A: Polymer Chemistry, 39, 986, 2001
    109. Yan Gao, Namita Roy Choudhury, Naba Dutta, Jani Matisons, Mike Reading, Luc Delmotte, Chem. Mater., 13, 3644, 2001
    110. Takahashi, et. al., Kobunshi Ronbunshu, 56, 220, 2000
    111. Jen Ming Yang, Chun Hsiung Shih, Journal of Biomedical Materials Research Part A., 64 A, 1, 138, 2003
    112. Adam Strachota, Irena Kroutilova , Jana Kova , and Libor Mate, Macromolecules, 37, 9457, 2004
    113. Chyi-Ming Leu, Yao-Te Chang, and Kung-Hwa Wei*”Synthesis and Dielectric Properties of Polyimide-Tethered Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites via POSS-diamine “Macromolecules 2003, 36, 9122-9127
    114. Robin E. Southward, and David W. Thompson,” Metal-Polyimide Nanocomposite Films: Single-Stage Synthesis of Silvered Polyimide Films Prepared from Silver(I) Complexes and BPDA/4,4□-ODA” Chem. Mater. 2004, 16, 1277-1284
    115. Suk Hang Chan, Wing Tak Wong, and Wai Kin Chan*”Synthesis and Properties of Polyimide with Diazacrown Ether Moiety and the Corresponding Polymer Barium Complexes”,4635 Chem. Mater. 2001, 13, 4635-4641
    116. Chyi-Ming Leu, Zhen-Wei Wu, and Kung-Hwa Wei,”Synthesis and Properties of Covalently Bonded Layered Silicates/Polyimide (BTDA-ODA) Nanocomposites”,Chem. Mater. 2002, 14, 3016-3021
    117. Kensuke Akamatsu, Shingo Ikeda, Hidemi Nawafune, and Shigehito Deki§,”Surface Modification-Based Synthesis and Microstructural Tuning of Nanocomposite Layers: Monodispersed Copper Nanoparticles in Polyimide Resins”,Chem. Mater. 2003, 15, 2488-2491
    118. D. Scott Thompson, David W. Thompson, and Robin E. Southward, ”Oxo-Metal-Polyimide Nanocomposites. 2. Enhancement of Thermal, Mechanical, and Chemical Properties in Soluble Hexafluoroisopropylidine-Based Polyimides via the in Situ Formation of Oxo-Lanthanide(III)-Polyimide Nanocomposites”,Chem. Mater. 2002, 14, 30-37
    119. Satoshi Yoda, Atsushi Hasegawa, Hiroyuki Suda, Yuko Uchimaru,Kenji Haraya, Tomoya Tsuji, and Katsuto Otake,”Preparation of a Platinum and Palladium/Polyimide Nanocomposite Film as a Precursor of Metal-Doped Carbon Molecular Sieve Membrane via Supercritical Impregnation”,Chem. Mater. 2004, 16, 2363-2368
    120. Ryo Tamaki, Jiwon Choi, and Richard M. Laine,”A Polyimide Nanocomposite from Octa(aminophenyl)silsesquioxane”,Chem. Mater. 2003, 15, 793-797
    121. Chyi-Ming Leu, G. Mahesh Reddy, Kung-Hwa Wei,, and Ching-Fong Shu,”Synthesis and Dielectric Properties of Polyimide-Chain-End Tethered Polyhedral Oligomeric Silsesquioxane Nanocomposites”,Chem. Mater. 2003, 15, 2261-2265
    122. Xiu-yong Shang, Zi-kang Zhu, Jie Yin, and Xiao-dong Ma ,”Compatibility of Soluble Polyimide/Silica Hybrids Induced by a Coupling Agent”,Chem. Mater. 2002, 14, 71-77
    123. Z. Ahmad and J. E. Mark, ”Polyimide-Ceramic Hybrid Composites by the Sol-Gel Route”Chem. Mater. 2001, 13, 3320-3330
    124. Chao-Ching Chang and Wen-Chang Chen,”Synthesis and Optical Properties of Polyimide-Silica Hybrid Thin Films”,Chem. Mater. 2002, 14, 4242-4248
    125. Chang-Sik Ha, Hae-Dong Park, and Curtis W. Frank‡,”nterfacial Interaction in Polyimide/Silica Hybrid omposites by Fluorescence Spectroscopy”,Chem. Mater. 2000, 12, 839-844
    126. J. Brus, J. Dybal, P. Sysel, and R. Hobzova,”Mobility, Structure, and Domain Size in Polyimide-Poly(dimethylsiloxane) Networks Studied by Solid-State NMR Spectroscopy “Macromolecules 2002, 35, 1253-1261
    127. T.C. Chang, G.P. Wang, H.C. Tsai, Y.S. Hong, Y.S. Chiu, Polymer Degradation and Stability, 74, 229, 2001
    128. Young-Wook Park, Dong-Sung Lee, Sang-Hyun Kim, J. Applied Polymer Science, 91, 1774, 2004
    129. Masakazu Mesaki, Yoshinori Tatematsu, Hideki Goda, Furukawa Review, 22, 1, 2002
    130. 垣內弘,”New Epoxy Resin”株式會社昭晃堂,1985. ( 日文)
    131. 橋本邦之,”Epoxy Resin”,日刊工業新聞社,1969( 日文)
    132. 新保正樹,”Epoxy Resin Handbook”, 日刊工業新聞社,1987(日文)
    133. Clayton A. May, “Epoxy Resins – Chemistry and Technology”, Marcel Dekker, 1988.
    134. Hari Singh Nalwa, Handbook of Orgainc-inorganic Hybrid material and Nanocomposites”, American Scientific Publishers, 2002.
    135. Mitsue Koizumi, et., “Advanced Technology of Nano-materials”, CMC, 2001( 日文)
    136. Kajiwara Meisetsu, et., “ Development and Application of Inorganic-organic Hybrid Material”, CMC, 2001.( 日文)
    137. 日本化學會,” 無機有機Nano複合物質”, 學會出版Center, 1999.(日文)
    138. 作花濟夫,”Sol-Gel 法之科學”,Agune承風社,1988.(日文)
    139. M. OCHI, R. TAKAHASHI, Journal of Polymer Science: Part B: Polymer Physics, Vol. 39, 1071–1084, 2001
    140. Libor Mate, Jose Plestil, Karel Dusek, Journal of Non-Crystalline Solids, 226, 114, 1998
    141. J. Macan., H. Ivankovi, M. Ivankovi, H.J. Mencer, Thermochimica Acta, 414, 219, 2004
    142. Gingo Ho Hsiue, Ying Ling Liu, Hsin Hao Liao, Journal of Polymer Science: Part A: Polymer Chemistry, 39, 986, 2001
    143. Yan Gao, Namita Roy Choudhury, Naba Dutta, Jani Matisons, Mike Reading, Luc Delmotte, Chem. Mater., 13, 3644, 2001
    144. Takahashi, et. al., Kobunshi Ronbunshu, 56, 4, 220, 2000
    145. Chin-Lung Chiang, Feng-Yih Wanga, Chen-Chi M. Ma, Hey-Rey Changb, , Polymer Degradation and Stability, 2002, 77, 273–278
    146. K. J. Shea and D. A. Loy, Chem. Mater. , 13, 3306-3319, 2001
    147. D. A. Loy, Webster O.W., J. Am. Chem. Soc., 114, 6700, 1992
    148. K. J. Shea, D. A. Loy, J. Non-Cryst. Solids, 160, 234, 1993
    149. Corriu, R. J. P.; Moreau, J. J. E.; Thepot, P.; Man. M. W. C., Chem. Mater. , 4, 1217, 1992
    150. Corriu, R. J. P.; Moreau, J. J. E.; Thepot, P.; Man. M. W. C., 6, 640, 1994
    151. Corriu, R. J. P.; Moreau, J. J. E.; Thepot, P.; Man. M. W. C., Chem. Mater., 4, 987, 1994
    152. Oviatt. H.W., Jr.; Shea. K. J.; Small, J. H. Chem. Mater., 5, 943, 1993
    153. Loy, D. A. ; Jamison, G.M.; B. M.; Russick, E. M.; Prabaker, S.;Shea, K. J. Non-Cryst. Solids, 44, 186, 1995
    154. Bezombes, J. P.; Chuit, C., Corriu. R. J. P.; Reye. C. Can, J. Chem. 78, 1519,2000
    155. Corriu. R. J. P.; Hoarau, C., Mehdi, A., Reye. C., Chem. Commun., 1, 71, 2000
    156. Bezombes, J. P.; Chuit, C., Corriu. R. J. P.; Reye. C. Can, J. Mater. Chem. 9, 1727, 1999
    157. Loy, D. A., Carpenter, J. P., Yamanaka, S. A., Mcclain, M. D., Greaves. J., Hobson, S., Shea, K. J., Chem. Mater., 10, 4129, 1998
    158. Gemeinhardt, G, C., Young, S. K., Mauritz, K. A., Polym. Prepr., 39, 379, 1998
    159. Guizard, C.; Lacan, P. New J. Chem. 18, 1097, 1994
    160. Shaltout, R. M., Loy. D. A., McClain, M. D., Prabaker, S. Greaves, J., Shea, K. J., Polym. Prepr., 41, 508, 2000
    161. Ribeiro, A. O., Biazzotto, J. C., Serra, O. A. J. Non-Cryst. Solid, 273, 198, 2000
    162. Corriu, R. J. P., Hesemann, P., Lanneau, G. F., Chem. Commun., 15, 1845, 1996
    163. Lindner, E., Jaeger, A., Schneeler, T.; Mayer, H. A., Chem. Mater., 9, 81, 1997
    164. Lindner, E., Jaeger, A., Schneeler, T.; Mayer, H. A., Bertagnolli, H., Ertel, T. S., Chem. Mater., 9, 1524, 1997
    165. Moran, M., Cuadrado, I., Pineda, L., Masaguea, J. R, Losada, J., Inorg. Chim. Acta, 169, 119, 1990
    166. 垣內弘,”New Epoxy Resin”株式會社昭晃堂,1985. ( 日文)
    167. 橋本邦之,”Epoxy Resin”,日刊工業新聞社,1969( 日文)
    168. 新保正樹,”Epoxy Resin Handbook”, 日刊工業新聞社,1987(日文)
    169. Clayton A. May, “Epoxy Resins – Chemistry and Technology”, Marcel Dekker, 1988.
    170. Aicha Serier, Jean Pierre Pascault, and Lam Thanh My, “ Reactions in Aminosilane-Epoxy Prepolymer Systems 1. Kinectics of Epoxy-Amine Reactions”, Journal of Polymer Science: Part A: Polymer chemistry, 1991, vol 29, 209-218
    171. A. Serier, J. P. Pascault, and Thanh My Lam, “ Reactions in Aminosilane-Epoxy Prepolymer Systems II. Reactions of alkoxysilanes groups with or without the preserence of water”, Journal of Polymer Science: Part A: Polymer chemistry, 1991, vol 29, 1125-1131
    172. Jen Ming Yang, Chun Hsiung Shih, Journal of Biomedical Materials Research Part A., 64 A, 1, 138, 2003
    173. Fengyi Liu, Lianshe Fu, Jun Wang, Qingguo Meng, Huanrong Li, Junfang Guo and Hongjie Zhang, “Luminescent film with terbium-complex-bridged polysilsesquioxanesy”, New J. Chem., 2003, 27, 233–235
    174. K. J. Shea, D. A. Loy and O. Webster, “Arylsilsesquioxane Gels and Related Materials. New Hybrids of Organic and Inorganic Networks”, J. Am. Chem. SOC. 1992, 114, 6700-6710
    175. J. Clauss, K. Schmidt-Rohr, and H.W. Spiess, Determination of domain sizes in polymers, Acta Polymer, 44, 1,1993
    176. G. L. Wilkes, B. Drier, H. H. Huang, “Ceramers - Hybrid Materials Incorporating Polymeric Oligomeric Species into Inorganic Glasses Utilizing a Sol-Gel Approach”, Abstracts of Papers of the American Chemical Society, 1985, 190, 109
    177. R. H. Baney, M. Itoh, A.Sakakibara, T. Suzuki, “Silsesquioxanes ”, Chem. Rev 1995; 95, 1409
    178. A. Provatas and J. G. Matisons, “Porosity in hexylene-bridged polysilsesquioxanes. Effects of monomer concentration”, TRIP 1997; 5, 10
    179. M. Tanimura, Handbook of silicon materials. Tokyo: Dow Corning Toray Silicon; 1993, 299
    180. L. H. Brown, Treatise: Silicones in protective coatings, vol. 1, Part 3. New York: Marcel Dekker; 1972, 539
    181. J. D. Lichtenhan, “Aryl-bridged polysilsesquioxanes. A new class of microporous materials”, Comments Inorg Chem 1995; 17, 115
    182. F. K. Chi “Carbon Containing Monolithic Glasses via the Sol-Gel Process”, Ceram. Engng. Sci Proc 1983; 4, 704
    183. A. S. Gozdz, “Dialkylene Carbonate-Bridged Polysilsesquioxanes. Hybrid Organic-Inorganic Sol-Gels with a Thermally Labile Bridging Group”, Polym. Adv. Technol., 1994; 5, 70
    184. Chin-Lung Chiang, Chen-Chi M. Ma, “Synthesis, characterization and thermal properties of novel epoxy containing silicon and phosphorus nanocomposites by sol–gel method”, European Polymer Journal, 2002, 38, 2219–2224
    185. Chin-Lung Chiang, Feng-Yih Wanga, Chen-Chi M. Ma, Hey-Rey Changb, “Flame retardance and thermal degradation of new epoxy containing silicon and phosphorous hybrid creamers prepared by the sol-gel method”, Polymer Degradation and Stability, 2002, 77, 273–278
    186. S. Ananda Kumar, T. S. N. Sankara Narayanan, “Thermal properties of siliconized epoxy interpenetrating coatings”, Progress in Organic Coatings, 2002, 45, 323–330
    187. Jiwon Choi, Jason Harcup, Albert F. Yee, Quan Zhu, and Richard M. Laine, “Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes”, J. Am. Chem. Soc., 2001, 123, 46
    188. Aicha Serier, Jean Pierre Pascault, and Lam Thanh My, “ Reactions in Aminosilane-Epoxy Prepolymer Systems 1. Kinectics of Epoxy-Amine Reactions”, Journal of Polymer Science: Part A: Polymer chemistry, 1991, vol 29, 209-218
    189. A. Serier, J. P. Pascault, and Thanh My Lam, “ Reactions in Aminosilane-Epoxy Prepolymer Systems II. Reactions of alkoxysilanes groups with or without the preserence of water”, Journal of Polymer Science: Part A: Polymer chemistry, 1991, vol 29, 1125-1131
    190. Jen Ming Yang, Chun Hsiung Shih, Journal of Biomedical Materials Research Part A., 64 A, 1, 138, 2003
    191. Tzong-Ming Lee, Chen-Chi M. Ma, Chia-Wen Hsu, Han-Lang Wu, Journal of Applied Polymer Science, accepted, 2005 Feb.
    192. Tzong-Ming Lee, Chen-Chi M. Ma, Chia-Wen Hsu, Han-Lang Wu, Polymer, 2005, vol.46, 8286-8296.
    193. Molyneux, M., Composites, 14, 87 (1983)
    194. Chiao, L. High perf. Polym. 1, 109 (1989)
    195. James J. Harris, Samuel, C. Temin, J Appl Polymer Science, 10, 523 (1966)
    196. C.S. Chen, Eli M. Pearce, J Appl Polymer Science, 37, 1105 (1989)
    197. Roger J. Morgan, Eleno T. Mones, J Appl Polymer Science, 33, 999 (1987)
    198. Thomas E. Munns, James C Seferis, J Appl Polymer Science, 28, 2227 (1983)
    199. Michael Tackie, Geogre C. Martin, J Appl Polymer Science, 48, 793 (1993)
    200. He Pingsheng, Li Chune, J Appl Polymer Science, 43, 1011 (1991)
    201. Ramanan, Krishnamoorti; Richard, A. Vaia, Polymer Nanocomposites, ACS, (2001)
    202. C. Jeffrey Brinker, George W. scherer, Sol-gel Science,Academic Press, (1990)
    203. Mascia, L. Trends Polym Sci, 3, 61 (1995)
    204. Wang, H. H., Orler, B., Wilkes, G. L. Macromolecules, 20, 1322 (1987)
    205. Nandi, M., Conklin, J. A., Salvati, Jr., L.; Sean, A. Chem Mater, 3, 201 (1991)
    206. Leavy, D., Esquimus, L. Adv Mater, 7, 120 (1995).
    207. Schmidt, H.; Wolter, H. J Non-Cryst Solids, 121, 248 (1990)
    208. Mascia, L.; Tang, T. J Sol-Gel Sci Technol, 13, 405 (1998).
    209. R. Tamaki, K. Naka, Y. Chujo, Polym. J., 30, 60 (1998)
    210. R. Tamaki, K. Naka, Y. Chujo, Polym. Bull., 39, 303 (1997)
    211. Mingna Xionga, Bo Youa, Shuxue Zhoua, Limin Wua,b, Polymer, 45, 2967 (2004)
    212. L. Matejka, O. Dukh, J. Kolarik, Polymer, 41, 1449 (2000)
    213. M. Ochi, R. Takahashi, J Poly Science, Part B, 39, 1071 (2001)
    214. Leno Mascia, R J. Heath, Vincent S. Y. Ng, J Appl Polymer Science, 94, 1279 (2004).
    215. Saegusa, T.; Chujo, Y., J. Macromol. Sci. Chem., 27, 1603 (1990)
    216. Chujo, Y.; Ihara, E.; Kure, S.; Saegusa, T., Macromolecules, 26, 5681 (1993)
    217. E.R. Pohl, F.D. Osterholtz, Molecular Characterization of composite Interface, Plenum, New York, 1985.
    1. G. E.Bower, L.W. Frost, J. Polym. Sci., Part A: Polym. Chem. Ed., 1, 3135, (1963)
    2. K. Kurita, H. Itoh, and Y. Iwakura, E.Bower, L.W. Frost, J. Polym. Sci., Part A: Polym. Chem. Ed., 16, 779, (1978)
    3. M. Fujimoto, T.Oishi, M.Momio, and S. Murata, Nippon Kagaku Kaishi, 9,1465 (1976)
    4. Y. Imai, N. M. Maldar, and M. Kakimoto, J. Polym. Sci., Part A: Polym. Chem. Ed., 23, 2077, (1985)
    5. M. Kakimoto, R. Akiyama, Y. S. Negi, and Y. Imai, J. Polym. Sci., Part A: Polym. Chem. Ed., 26, 99, (1988)
    6. W,Wrasidlo and J. M. Augl, J. Polym. Sci., Part A: Polym. Chem. Ed., 7, 321, (1969)
    7. J. L. Nieto, J. G. de la Campa, and J. de Abajo, Makromol. Chem., 183, 557(1982)
    8. J. G. de la Campa, J. de Abajo, and J. L. Nieto, Makromol. Chem., 183, 571(1982)
    9. C. P. Yang, and S. H. Hsiao, Makromol. Chem., 190, 2119(1989)
    10. C. P. Yang, and Y. Y. Yen, J. Polym. Sci., Part A: Polym. Chem. Ed., 30, 1855, (1992)
    11. Hari Singh Nalwa, Handbook of organic-inorganic hybrid materials and nanocomposites, American Scientific Publishers, (2003)
    12. Morikawa A, Iyoku Y, Kakimoto M, Imai Y. Polym J., 24(1), 107, (1992)
    13. 13 Morikawa A, Iyoku Y, Kakimoto M, Imai Y. J. Mater Chem, 2(7),:679,(1992).
    14. Morikawa A, Yamaguchi H, Kakimoto M, Imai Y. Chem Mater, 6, 913 (1994)
    15. Masakazu Mesaki, Yoshinori Tatematsu, Hideki Goda, Furukawa Review, No. 22 2002
    16. T.C. Chang,, G.P. Wang, H.C. Tsai, Y.S. Hong, Y.S. Chiu, Polymer Degradation and Stability, 74, 229–237 (2001)
    17. Tzong-Ming Lee, Chen-Chi M. Ma, Chia-Wen Hsu, Han-Lang Wu, Journal of Applied Polymer Science, accepted, 2005 Feb.
    18. Tzong-Ming Lee, Chen-Chi M. Ma, Chia-Wen Hsu, Han-Lang Wu, Polymer, vol.46, 8286-8296(2005).
    19. Tzong-Ming Lee, Chen-Chi M. Ma, Journal of Polymer Science Part A: Polymer Chemistry, accepted, 2005 October.
    20. Imai et.al., Kobunshi Kagaku, 29, 182, (1972)
    21. Saegusa, T.; Chujo, Y., J. Macromol. Sci. Chem., 27, 1603 (1990)
    218. Chujo, Y.; Ihara, E.; Kure, S.; Saegusa, T., Macromolecules, 26, 5681 (1993)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE