簡易檢索 / 詳目顯示

研究生: 吳依芯
Wu, Yi-Hsin
論文名稱: 製備Sn-Ag-Cu/Ni銲接系統的參數控制及奈米雙晶鎳薄膜對界面反應的影響
Operational parameter control in the fabrication of Sn-Ag-Cu/Ni joint and the effect of nanotwinned Ni film on the interfacial reaction
指導教授: 杜正恭
Duh, Jenq-Gong
口試委員: 李志偉
劉國全
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 91
中文關鍵詞: 雙晶奈米結構改質無鉛銲料金屬墊層鎳膜
外文關鍵詞: nanotwin, structure, lead-free solder, metallization, Ni film
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在覆晶接合技術(flip chip technology)中,銲料(solder bump)與凸塊底金屬層(under bump metallization, UBM)材料的選擇經常用於決定銲接點迴焊(reflow)之後所生成的介金屬化合物(intermetallic compound, IMC)的生成厚度、形貌以及相轉變,許多研究利用添加第四元元素於錫銀銅銲料、改變銲料抑或是改變凸塊底金屬層的材料系統,以達到抑制介金屬化合物的生長、相轉變或是改變形貌,但元素添加或是改變材料系統都會受到新元素的限制,例如氧化或是價格問題,因此,利用凸塊底金屬層的結構改質去影響回焊後的界面反應越來越受重視。
    本研究利用直流磁控濺鍍 (DC magnetron sputter)的基材偏壓(substrate bias)調控以製備擁有緻密堆疊特性的鎳膜,不同堆疊緻密性的鎳膜當作凸塊底金屬層,進行相同溫度下,不同時間的回焊,觀察其生成的介金屬化合物的厚度、相轉變程度,並深入探討凸塊底金屬層的結構影響介金屬化合物生成的原因。
    利用直流磁控濺鍍的製備不同微結構特性的鎳膜,經由原子力顯微鏡(Atomic Force Microscope, AFM)觀察其濺鍍後的表面粗糙度,透過X光繞射分析(X-ray Diffraction, XRD)分辨其方向性的差異,進一步利用穿透式電子顯微鏡(Transmission Electron Microscope, TEM)驗證其結構緻密程度的差異性,亦結合高解析原子影像(High Resolution image, HR image)和選區繞射圖樣(Selected-Area Diffraction Pattern, SADP)更精確驗證高堆疊致密程度的鎳膜是奈米雙晶結構(nano-twinned structure)。不同結構的鎳膜基板焊錫銀銅銲球經過250 ℃ 的迴焊後,以場發射掃描式電子顯微鏡(Field-Emission Scanning Electron Microscope, FE-SEM)觀察介金屬化合物的生成和相轉變,並計算介金屬化合物的生成厚度和鎳膜的消耗程度。
    利用動力學以及熱力學的觀點深入分析並探究鎳膜具高推疊緻密性的奈米雙晶結構抑制介金屬化合物的生成厚度,並有效減緩鎳膜的消耗程度。因此奈米雙晶鎳薄膜為最有潛力的薄膜結構運用在電子封裝的凸塊底金屬層。


    In electronic packaging, rapid growth of intermetallic compound (IMC), fast consumption rate of UBM, dual-phase IMC and spalling phenomenon are concerned in the Sn-Ag-Cu (SAC) solder system. Many studies have aimed to improve the characteristics of the SAC solder system, including adding a fourth element to SAC solder or changing to another solder material. Doping other elements to the under bump metallization (UBM) or the alternative material UBM was also employed. All above methods are material control, which would bring to some concerns, such as the issue of oxidation and the cost of the modified process due to the new material system. Beyond the material control, the method of the architecture control by modifying the microstructure of UBM was demonstrated to affect the interfacial reaction in solder joint. The microstructural control of UBM is a potential way to solve the critical issues in the SAC solder system.
    With the structural difference of Ni UBM, it is expected that the dense structure of Ni UBM may inhibit its consumption rate of UBM and suppress the growth of IMC during reflow. While the bias voltage applied during coating process, the microstructure of film can be shaped and modulated to the dense structure. When the bias voltage increased to 200 volt, the (111) nanotwinned Ni film was produced due to the high mobility of adatoms and the high energy of ion bombardment during the growing process. By using the nanotwinned structure of Ni film, slow interfacial reactions in solder joint were observed because of the attractive properties of nanotwinned structure. Nanotwinned structure was regarded as a perfect symmetric crystal, which possessed the lower boundary energy and higher activation energy along boundary. As a result, the stable structure of nanotwinned Ni film significantly suppress the formation of interfacial IMC and can be employed as thinner Ni-based UBM in electronic packaging.

    Content LIST OF TABLE IV FIGURES CAPTION V ABSTRACT VIII CHAPTER I INTRODUCTION 1 1.1 Background 1 1.2 Motivation and Goals in This Study 2 CHAPTER II LITERATURE REVIEW 5 2.1 Electronic Packaging 5 2.2 Solder Bump 7 2.2.1 SnPb Solder 8 2.2.2 Lead-Free Solder 9 2.2.3 SnAgCu Solder with 4th Minor Addition 9 2.3 Under Bump Metallization 10 2.3.1 Cu-Based UBM 11 2.3.2 Ni-Based UBM 11 2.4 Interfacial Reaction in Solder Joint 12 2.4.1 Interfacial Reaction between Solders and Cu-Based UBM 12 2.4.2 Interfacial Reaction between Solders and Ni-Based UBM 13 2.4.3 Interfacial Reaction between Solders and UBM with Various Structures 14 2.4.4 Reaction Constant 16 2.5 Self-Diffusion along Grain Boundary 16 2.6 Nano-Twinned Structure 17 2.6.1 Twinning Mechanism 17 2.6.2 Characteristics of Twinned Structure 18 2.6.3 Twin Boundary 19 2.6.3.1 Interfacial Energy of Grain Boundary 19 2.6.3.2 Self-Diffusion along Grain Boundary 20 CHAPTER III EXPERIMENTAL PROCEDURE 37 3.1 Fabrication of Ni/Ti/Si UBM and Solder Joints 37 3.1.1 Sputtered Ni/Ti/Si UBM 37 3.1.2 Soldering process 38 3.2 Sample Preparation for Characterization 39 3.2.1 Ni/Ti/Si UBM 39 3.2.2 Reflowed Sample 39 3.3 Characterization and Analysis 40 3.3.1 Characterization of Ni/Ti/Si UBM 40 3.3.2 Evolution of Intermetallic Compound 41 CHAPTER IV RESULTS AND DISCUSSION 45 4.1 Microstructure of Ni Film 45 4.1.1 Evaluation of Surface Roughness by AFM 45 4.1.2 Measurement of Preferred Orientation by XRD 45 4.1.3 Identification of Structure by SAD Patterns and HR Images of TEM 46 4.2 Interfacial Reaction between Ni Film and Sn-Ag-Cu Solder 56 4.2.1 Consumption of Ni film 57 4.2.2 Reaction constant 58 4.3 Nanotwinned Ni Film 64 4.3.1 Formation of Nanotwinned Ni Film by DC Sputtering 64 4.3.2 Interfacial Energy of Nanotwinned Boundary 65 4.3.3 Self-Diffusion along Nanotwinned Boundary 66 4.3.4 Strong Diffusion/Reaction Resistance of Twinned Boundary 67 CHAPTER V CONCLUSIONS 73 REFERENCES 75

    References
    1. L. F. Miller, “Controlled collapse reflow chip joining”, IBM J. Res. Develop. 13 (1969) 239.
    2. J.H. Lau, “Flip chip technologies”, McGraw-Hill, New York, 1996, pp. 26.
    3. G.R. Blackwell, “The electronic packaging handbook”, Boca Raton, Florida: CR Press, 2000, pp. 4.
    4. S.K. Kang, R.S. Rai and S. Purrshothaman, “Interfacial reactions during soldering with lead-tin eutectic and lead (Pb)-free, tin-rich solders”, J. Electron. Mater. 25 (1996) 1113.
    5. A.A. Liu, H.K. Kim, K.N. Tu and P.A. Totta, “Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films”, J. Appl. Phys. 80 (1996) 2774.
    6. H.K. Kim, K.N. Tu and P.A. Totta, “Ripening-assisted asymmetric spalling of Cu-Sn compound spheroids in solder joint on Si wafer”, Appl. Phys. Lett. 68 (1996) 2204.
    7. J.W. Nah and K.W. Paik, “Investigation of flip chip bump metallization systems of Cu pads”, IEEE Trans. Compon. Packag. Technol. 25 (2002) 32.
    8. C.E. Ho, R. Zheng, G.L. Luo, A.H. Lin and C.R. Kao, “Formation and resettlement of (AuxNi1-x)Sn4 in solder joints of ball-grid-array packages with the Au/Ni surface finish”, J. Electron. Mater. 29 (2000)1175.
    9. C.E. Ho, L.C. Shiau and C.R. Kao, “Inhibiting the formation of (AuxNi1-x)Sn4 and reducing the consumption of Ni metallization in solder joints”, J. Electron. Mater. 31 (2002) 1264.
    10. K.L. Lin and Y.C. Liu, “Reflow and property of Al/Cu/electroless Nickel/Sn-Pb solder bumps”, IEEE Trans. On Adv. Packag. 22 (1999) 575.
    11. J.Y. Park, C.W. Yang, J.S. Ha, C.U. Kim, E.J. Kwon, S.B. Jung and C.S. Kang, ”Investigation of interfacial reaction between Sn-Ag eutectic solder and Au/Ni/Cu/Ti thin film metallization”, J. Electron. Mater. 30 (2001) 1165.
    12. J. W. Jang, P.G. Kim, K.N. Tu, .R. Frear and P. Thompson, “Solder reaction-assisted crystallization of electroless Ni-P under bump metallization in low cost flip chip technology” J. Appl. Phys. 85 (1999) 8456.
    13. B.L. Young and J.G. Duh, “Interfacial reaction and microstructural evolution for electroplated Ni and electroless Ni in the under bump metallurgy with 42Sn-58Bi solder during annealing:, J. Electron. Mater. 30 (2001) 878.
    14. C.Y. Liu, K.N. Tu, T.T. Sheng, C.H. Tung, D.R. Frear and P. Elenius, “Electron microscopy of interfacial reaction between eutectic SnPb and Al/Ni(V)/Cu thin film metallization”, J. Appl. Phys. 87 (2000) 750.
    15. M. Li. F. Zhang, W.T. Chen, K. Zeng, K.N. Tu, H. Balkan and P. Elenius, “Interfacial microstructure evolution between eutectic SnAgCu solder and Al/Ni(V)/Cu thin film”, J. Mater. Res. 17 (2002) 1612.
    16. D.R. Frear, J.W. Jang, J.K. Lin and C. Zhang, “Pb-free solders for flip-chip interconnects”, JOM 53 (2001) 1047.
    17. T. Laurila, V. Vuorinen and J.K. Kivilahti, “Interfacial reactions between lead-free solders and common base materials”, Mater. Sci. Eng. R: Rep. 49 (2005) 1.
    18. I.E. Anderson, J.C. Foley, B.A. Cook, J. Harringa, R.L. Terpstra and O. Unal, “Alloying effects in near-eutectic Sn-Ag-Cu solder alloys for improved microstructural stability”, J. Electron. Mater. 30 (2001) 1050.
    19. K.J. Zeng, R. Stierman, D. Abbott and M. Murtuza, “The root cause of black pad failure of solder joints with electroless Ni/immersion gold plating”, JOM. 58 (2006) 75.
    20. K.S. Kim, S.H. Huh and K. Suganuma, “Effects of cooling speed on microstructure and tensile properties of Sn-Ag-Cu alloys”, Mater. Sci. Eng. A 333 (2003) 106.
    21. I.E. Anderson, “Development of Sn-Ag-Cu and Sn-Ag-Cu-X alloys for Pb-free electronic solder applications:, J. Mater. Sci: Mater. Electron. 18 (2007) 55.
    22. S.C. Yang, C.C. Chang, M.H. Tsai and C.R. Kao, “Effect of Cu concentration, solder volume, and temperature on the reaction between SnAgCu solders and Ni”, J. Alloys Compd. 499 (2010) 149.
    23. W.M. Chen, S.C. Yang, M.H. Tsai and C.R. Kao, “Uncovering the driving force for massive spalling in the Sn–Cu/Ni system ”, Scripta Mater. 63 (2010) 47.
    24. S.J. Wang, C.Y. Liu, ”Retarding growth of Ni3P crystalline layer in Ni(P) substrate by reacting with Cu-bearing Sn(Cu) solder”, Scripta Mater. 49 (2003) 813.
    25. C.H. Wang, S.W. Chen, “Sn-0.7 wt%.Cu/Ni interfacial reactions at 250 ℃”, Acta Mater. 54 (2006) 247.
    26. S.W. Fu, C.Y. Yu, T.K. Lee, K.C. Liu and J.G. Duh, “Impact crack propagation through the dual-phased (Cu,Ni)6Sn5 layer in Sn-Ag-Cu/Ni solder joint”, Mater. Lett. 80 (2012) 103.
    27. M.J. Rizvi, Y.C. Chan, C. Bailey, H. Lu and M.N. Islam, “Effect of adding 1 wt.% Bi into the Sn-2.8Ag-0.5Cu solder alloy on the intermetallic formations with Cu-substrate during soldering and isothermal aging”, J. Alloy. Compd. 407 (2006) 208.
    28. A. Sharif and Y.C. Chan, “Liquid and solid state interfacial reactions of Sn-Ag-Cu and Sn-In-Ag-Cu solders with Ni-P under bump metallization”, Thin Solid Films, 504 (2006) 431.
    29. K.S. Kim, S.H. Huh and K. Suganuma, “Effects of fourth alloying additive on microstructures and tensile properties of Sn-Ag-Cu alloy and joints with Cu”, Microelectron. Reliab. 43 (2002) 259.
    30. S.K. Kang, D. Leonard, D.Y. Shin, L. Gignac and D.W. Henderson, “Interfacial reactions of Sn-Ag-Cu solders modified by minor Zn alloying addition”, J. Electron. Mater. 35 (2006) 479.
    31. F. Gao and T. Takemoto, “Effects of addition participation in the interfacial eaction on the growth patterns of Cu6¬¬Sn5-based IMCs during reflow pocess”, J. Alloy. Compd. 421 (2006) 283.
    32. H.T. Lee and Y.H. Lee, “Adhesive strength and tensile fracture of Ni particle enhanced Sn-Ag composite solder joints”, Mater. Sci. Eng. A 419 (2006) 172.
    33. M.G. Cho, S.K. Seo and H.M. Lee, “Wettability and interfacial reactions of Sn-based Pb-free solders with Cu-xZn alloy under bump metallurgies”, J. Alloy. Compd. 474 (2009) 510.
    34. W.K.Liao, C.M. Chen, M.T. Lin and C.H. Wang, “Enhanced growth of the Ni3Sn4 phase at the Sn/Ni interface subjected to strains”, Scripta Mater. 65 (2011) 691.
    35. T.S. Huang, H.W. Tseng, Y.H. Hsiao, C.H. Cheng, C.T. Lu and C.Y. Liu, “Abnormal Cu3Sn growth and Kirkendall formation between Sn and (111) and (220) preferred-orientation Cu substrates”, Electrochem. Solid-State Lett. 14 (2011) H393.
    36. J.M. Wang, K.J. Wang and J.G. Duh, “Cu substrate with different grain sizes” J. Electron. Mater. 40 (2011) 7
    37. Y. Li, J. Chen, C. Lazik, P. Wang, L. Yang, J. Yu, T. Sun and E. Ko, “Nickel silicon thin film as barrier in under-bump-metallization by magnetron sputtering deposition for Pb-free chip packaging”, J. Mater. Res. 20 (2005) 2622.
    38. S. Gangopadhyay , R. Acharya, A.K. Chattopadhyay and S. Paul, “Effect of substrate bias voltage on structural and mechanical properties of pulsed DC magnetron sputtered TiN-MoSx composite coatings”, Vacuum 84 (2010) 843.
    39. J. Lin, J.J. Moore, W.D. Sproul, S.L. Lee and J. Wang, ”Effect of negative substrate bias on the structure and properties of Ta coatings deposited using modulated pulse power magnetron sputtering”, IEEE Trans. Plasma Sci. 38 (2010) 3071.
    40. R.R. Tummala and E.J. Rymaszewski, “Microelectronics packaging handbook 2nd edition”, Van Nostrand Reihold, New York, (1997).
    41. J.H. Lau, “Ball grid array technology”, McGraw-Hill, New York, (1995).
    42. PA. Totta and R.P. Sopher, “SLT device metallurgy and its monolithic extensions”, IBM J. Res. Develop. 13 (1969) 226.
    43. J.H. Lau and S.W.R. Lee, “Chip scale package, CSP: Design, Materials, Process and applications”, McGraw-Hill, New York, (1999).
    44. C.A. Harper, “Electronic packaging and interconnection handbook, 3rd edition, McGraw-Hill, New York, (2000).
    45. J.W. Morris, J.L.F. Goldstein and Z. Mei, “Microstructure and mechanical properties of Sn-In and Sn-Bi solder”, JOM 45 (1993) 25.
    46. R.E. Reed-Hill and R. Abbaschian, “Physical metallurgy principles, PWS, Boston, (1994).
    47. W.R. Lewis, “Notes on soldering”, Tin Research Institute, 66 (1961).
    48. M. Abtew and G. Selvaduray, “Lead-free solders in microelectronics”, Mater. Sci. Eng. R 27 (2000) 95.
    49. C.C. Chang, “Dissolution and interfacial reaction between Cu and Sn-Ag-Cu solders”, Mater Thesis, National Central University, Taoyaun, Taiwan (2007).
    50. Y. Kariya, Y. Hirata and M. Otsuka, “Effect of thermal cycles on the mechanical strength of quad flat pack leads/Sn-3.5Ag-X (X=Bi and Cu) solder joints”, J. Electron. Mater. 28 (1999) 1263.
    51. M.E. Loomans and M.E. Fine, “Tin-silver-cooper eutectic temperature and composition”, Metal. Mat. Trans. A 31 (2000) 1155.
    52. I.E. Anderson and J.L. Harringa, “Elevated temperature aging of solder joints based on Sn-Ag-Cu: Effects on joint microstructure and shear strength”, J. Electron. Mater. 33 (2004) 1485.
    53. S.K. Kang, W.K. Choi, D.Y. Shih, D.W. Henderson, T.Gosselin, A. Sarkhel, C. Goldsmith and K.J. Puttlitz, “Ag3Sn plate formation in the solidification of near-ternary eutectic Sn-Ag-Cu”, JOM 55 (2003) 61.
    54. K.J. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano and K.N. Tu, “Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability”, J. Appl. Phys. 97 (2005) 024508.
    55. C.L. Yeh, Y.S. Lai, H.C. Chang and T.H. Chen, “Empirical correlation between package-level ball impact test and board-level drop reliability”, Microelectron. Reliab. 47 (2007) 1127.
    56. I.E. Anderson and J.L. Harringa, “Suppression of void coalescence in thermal aging of tin-silver-copper-X solder joints”, J. Electron. Mater. 35 (2006) 94.
    57. S.K. Kang, D.Y. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S.I. Cho, J. Yu and W.K. Choi, “Controlling Ag3Sn plate formation in near-ternary-eutectic Sn-Ag-Cu solder by minor Zn alloying”, JOM (2004) 34.
    58. W. Liu and N.C. Lee, “The effects of additives to SnAgCu alloys on microstructure and drop impact reliability of solder joints”, JOM (2007) 26.
    59. F.A. Lowenheim, “Modern electroplating”, 2nd edition, Wiley, New York, (1974).
    60. S.V.S. Tyagi, V.K. Tondon and S. Ray, “Study of the crystallization behavior of electroless Ni-P films by electron and x-ray diffraction”, Z. Metallkd. 76 (1985) 492.
    61. J.H. Yeh, “Interfacial reactions and wetting property between electroless Ni in the under bump metallurgy (UBM) and Sn-37Pb solder”, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan, (2000).
    62. R.C. Agarwala and S. Ray, “Variation of structure in electroless Ni-P films with phosphorous content”, Z. Metallkd, 79 (1988) 472.
    63. T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, “Binary alloy phase diagrams”, ASM Int., Materials Park, Ohio, (1990) 1481.
    64. K. Zeng and J.K. Kivilahti, “Use of multicomponent phase diagrams for predicting phase evolution in solder/conductor systems”, J. Electron. Mater. 30 (2001) 35.
    65. C.H. Wang and H.T. Shen,” Effect of Ni addition on the interfacial reactions between Sn Cu solders and Ni substrate”, Intermetallics 18 (2010) 616.
    66. Y.D. Jeon, K.W. Paik, A. Ostmann and H. Reichl, “Effect of Cu contents in Pb- free solder alloys on intefacial reactions and bump reliability of Pb free solder bumps on electroless Ni-P under-bump metallurgy” J. Electron. Mater, 34 (2005) 80.
    67. C.Y. Li, G,J. Chiou, J.G. Duh, “Phase distribution and phase analysis in Cu6Sn5, Ni3Sn4 and the Sn-rich corner in the ternary SnCuNi isotherm at 240 ℃”, J. Electron. Mater. 35 (2006) 343.
    68. S.C. Yang, C.C. Chang, M.H. Tsai and C.R. Kao, “Effect of Cu concentration, solder volume, and temperature on the reaction between SnAgCu solders and Ni”, J. Alloys Compd. 499 (2010) 149.
    69. C.E. Ho, Y.W. Lin, S.C. Yang, C.R. Kao and D.S. Jiang,” Effects of limited Cu supply on soldering reactions between SnAgCu and Ni”, J. Electron. Mater. 35 (2006) 1017.
    70. S. V. Divinski, G. Reglitz and G. Wilde, “Grain boundary self-diffusion in polycrystalline nickel of different purity levels”, Acta Mater. 58 (2010) 386.
    71. L. G. Harrison, ‘’Influence of dislocations on diffusion kinetics in solids with particular reference to the alkali halides”, Trans. Faraday Soc. 57 (1961) 1191.
    72. I. Kaur, Y. Mishin and W. Gust, “Fundamentals of grain and interface boundary diffusion”, Chichester, Wiley, 1995.
    73. I. Aaltio, “Role of twin boundary mobility in performance of the Ni-Mn-Ga single crystals”, Doctoral Dissertations, Aalto University publication series 109 (2011).
    74. R.W. Cahn, “Twinned crystals”, Adv. Phys. 3 (1954) 363.
    75. S. Kibey, J.B. Liu, D.D. Johnson and H. Sehitoglu, “Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation”, Acta Mater. 55 (2007) 6843.
    76. J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J.Y. Huang and J.P. Hirth, ”Detwinning mechanisms for growth twins in face-centered cubic metals”, Acta Mater. 58 (2010) 2262
    77. X. Zhang, A. Misra, H. Wang, M. Nastasi, J.D. Embury, T.E. Mitchell, R.G. Hoagland and J.P. Hirth, ” Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films”, Appl. Phys. Lett. 84 (2004) 1096.
    78. X. Zhang, H. Wang, X.H. Chen, L. Lu, K. Lu, R.G. Hoagland and A. Misra, ”High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins”, Appl. Phys. Lett. 88 (2006) 173116.
    79. A. Misra, X. Zhang, D. Hammon and R.G. Hoagland, “Work hardening in rolled nanolayered metallic composites”, Acta Mater. 53 (2005) 221.
    80. O. Anderoglu, A. Misra, H. Wang, F. Ronning, M.F. Hundley and X. Zhang, ”Epitaxial nanotwnned Cu films with high strength and high conductivity”, Appl. Phys. Lett. 92 (2008) 083108
    81. O. Anderoglu, A. Misra, F. Ronning, H.Wang, X. Zhang, “Significant enhancement of the strength-to-resistivity ratio by nanotwins in epitaxial Cu films”, J. Appl. Phys.106 (2009) 024313.
    82. X.H. Chen, L. Lu, K.J. Lu, ” Electrical resistivity of ultrafine-grained copper with nanoscale growth twins”, Appl. Phys. 102 (2007) 083708.
    83. O. Anderoglu, A. Misra, H. Wang, X. Zhang, ”Thermal stability of sputtered Cu films with nanoscale growth twins”, J. Appl. Phys. 103 (2008) 094322.
    84. X. Zhang, A. Misra, H. Wang, J.G. Swadener, A.L. Lima, M.F. Hundley, R.G. Hoagland, “hermal stability of sputter-deposited 330 austenitic stainless-steel thin films with nanoscale growth twins” Appl. Phys. Lett. 87 (2005) 233116.
    85. L. Xu, D. Xu, K.N. Tu, Y. Cai, N. Wang, P. Dixit, J.H.L. Pang, J.M. Miao, ”Structure and migration of (112) step on (111) twin boundaries in nanocrystalline copper”, J. Appl. Phys. 104 (2008) 113717.
    86. X. Zhang, A. Misra, H. Wang, T.D. She, M. Nastasi, T.E. Mitchell, J.P. Hirth, R.G. Hoagland, J.D. Embury, “Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning”, Acta Mater. 52 (2004) 995.
    87. K. Lu, L. Lu, S. Suresh, “Strengthening materials by engineering coherent internal boundaries at the nanoscale”, Science 324 (2009) 349.
    88. L. Lu, X. Chen, X. Huang, K.Lu, “Revealing the maximum strength in nanotwinned copper”, Science 323 (2009) 607
    89. L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu, “Ultrahigh strength and high electrical conductivity in copper”, Science 304 (2004) 422.
    90. X. Zhang,A. Misra, H. Wang, A.L. Lima, M.F. Hundley, R.G. Hoagland, “Effects of deposition parameters on residual stresses, hardness and electrical resistivity of nanoscale twinned 330 stainless steel thin films”, J. Appl. Phys. 97 (2005) 094302.
    91. X. Zhang, O. Anderoglu, R.G. Hoagland, A. Misra, “Nanoscale growth twins in sputtered metal films”, JOM 60 (2008) 75.
    92. D. Bufford, H. wang and X. Zhang, “High strength, epitaxial nanotwinned Ag films”, Acta Mater. 59 (2011) 93.
    93. A. Morawiec, ” Method to calculate the grain boundary energy distribution over the space of macroscopic boundary parameters from the geometry of triple junctions”, Acta Mater. 48 (2000) 3525.
    94. J.L. Shen, J. Dillon and G.S. Rohrer, “Relative grain boundary area and energy distributions in nickel“, Acta Mater. 57 (2009) 4304.
    95. V.Rothova, “Diffusion in the presence of twin boundaries”, Defect Diffus. Forum. 263 (2007) 201.
    96. I. Kaur, W. Gust and L. Kozma: “Handbook of Grain and interphase boundary diffusion data”, Ziegler Press, Struttgart, (1989).
    97. S.Z. Bokshtein, S.T. Kishkin, Y.M. Mishin and I.M. Razumovskii, Dokl. Akad. Nau SSSR 280 (1985) 1125.
    98. P. Neuhaus and Chr. Herzig: Z. Metallkd. 79 (1988) 595
    99. R.F. Canon, and J.P. Stark, “Analysis of penetration data from grain boundary diffusion experiments.” J. Appl. Phys. 40 (1969) 4361.
    100. J. ČERMÁK, “Grain boundary diffusion of Co-60 in nickel”, Phys. Stat. Sol. (a) 117 (1990) 387.
    101. W.L. Sarney, ”Understanding transmission electron microscopy diffraction patterns obtained from infrared semiconductor materials”, ARL-TR-3128 (2003).
    102. J. Musil, J. Vlcek, and P. Baroch, “Magnetron discharges for thin films plasma processing” pp. 95.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE