簡易檢索 / 詳目顯示

研究生: 簡鈺人
論文名稱: 一維豆莢結構金-氧化鎵奈米元件之研究
The Investigation of 1-D Gold-Peapodded Ga2O3 Nanodevices
指導教授: 周立人
Li-Jen Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 62
中文關鍵詞: 奈米元件
外文關鍵詞: nanowire, Ga2O3, gold
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在半導體材料中,特別是一維的奈米材料在電學和光學上面有獨特的特性,而且近來已經被應用當做奈米光電元件的材料。在我們實驗室研究中指出在I-V測量中顯現出β-Ga2O3是一種良好的絕緣體材料,這是因為氧化鎵本身是一種寬半導體能隙的材料有關。在沒有光照的情況下,絕緣體性質的結果可以從金奈米顆粒嵌入氧化鎵奈米線的I-V測量數據得知。由於奈米貴重金屬顆粒嵌入介電質材料的光學以及電學不尋常特性,所以目前已經引起很大的興趣產生。新奇的一維豆莢金-氧化鎵奈米線是用金、鎵和二氧化鎵在800℃下在簡單的熱退火情況下反應生成。
    由於金奈米顆粒有表面電漿共振的現象產生,所以用Nd:YAG雙頻率雷射光源(Laser century Technology, model GL532T)在一般大氣壓、室溫情況下測量得知532nm和632nm中對光反應的量測結果。此外,在我們的研究中宣稱新奇金奈米顆粒嵌入氧化鎵奈米線是未來下一個半導體工業時代的光電元件。
    從室溫條件下金奈米顆粒嵌入氧化鎵奈米線的光激發光譜量測結果中,可以值得討論的是發現在600nm波段範圍中有強的紅-橘散發光譜。而且明顯可見的紅橘光可以從肉眼觀察,這種現象在以往的研究還未被發現過。我們推測這種清晰可見的光源是由金奈米顆粒嵌入氧化鎵奈米線結構中的金和氧化鎵之間的鍵結所造成。


    Semiconducting nanoscale structures, especially one dimensional nanomaterials offer unique and novel electronic and optical properties, and have been applied in many optoelectronic nanodevice. There have been reported that pure β-Ga2O3 reveals an excellent insulator from the I-V measurement at room temperature due to the wide band gap feature in our group study. Under no laser illumination, the same phenomenon was observed form I-V measurement of gold-peapodded Ga2O3 nanowires. But noble-metal nanoparticles encapsulated in a dielectric matrix have attracted interest owing to their unusual optical and electrical properties. The novel metal-insulator heterostructure of gold-peapodded Ga2O3 nanowires, formed by the reaction of gold, gallium, and silica at 800℃, is successfully achieved by a simple thermal annealing process.
    Due to the surface-plasmon-resonance (SPR) effects of gold nanoparticles embedded in the dielectric matrix, the photo-response behavior of gold-peapodded Ga2O3 nanowires was characterized by using a double frequency Nd:YAG laser (Laser century Technology, model GL532T) with wavelength of 532 nm and 632nm under atmosphere and room-temperature conditions. In addition, the novel photo-switch of gold-peapodded nanowires in present study demonstrates the promising building blocks to perform the future optoelectronic devices in next generation semiconductor industry. From the room-temperature photoluminescence spectra of gold-peapodded Ga2O3 nanowires, it is noteworthy that the broad and strong red-orange emission centered at wavelength of 600nm. And the light source shows the vivid red-orange color was observed by the naked eye. Such phenomenon is first observed in our study and it supposes that the vivid light source is ascribed the interface bonding of the gold particles and β-Ga2O3 nanostructure

    Content Chapter 1 Introduction 1 1-1 Introduction of Nanomaterials 1 1-2 Vapor-Based Growth Mechanism 2 1-2-1 Vapor-Liquid-Solid Growth 2 1-2-2 Vapor-Solid Growth 3 1-2-3 Oxide-Assisted Growth 4 1-2-4 Carbothermal Growth 5 1-2-5 The Conclusions Various Vapor-Based Growth Mechanism 6 1-3 Background of Research 7 1-3-1 Introduction of Ga2O3 nanowires 7 1-3-2 Introduction of gold-peapodded Ga2O3 nanowires 8 1-3-3 Gallium Nitride Nanowires 9 1-3-4 Electrical measurements of nanowires 11 1-4 Surface Plasmon Resonance (SPR) 12 1-5 Motivation 13 Chapter 2 Experimental Procedures 15 2-1 Nanodevice Fabrication 15 2-1-1 Chip Cleaning and Sample Preparation 15 2-1-2 Location 15 2-1-3 Photoresist Spin Coating and Soft Baking 16 2-1-4 Electron Beam Lithography 16 2-1-5 Development 16 2-1-6 Thermal Evaporation 17 2-1-7 Lift Off Process 17 2-1-8 Device Evaluation 17 2-1-9 I-V Measurement 17 2-2 Photoresponse Measurement 18 2-3 Photoluminescence (PL) 18 2-4 X-ray Photoelectron Spectroscopy (XPS) 18 Chapter 3 Results and Discussion 19 3-1 Photoresponse of pure Ga2O3 nanowires excited at the wavelength of 532 nm 19 3-2 Photoresponse of the electrodes excited at the wavelength of 532nm 19 3-3 Photoresponse of Au-peapodded Ga2O3 nanowires excited at wavelength of 532 nm………………………………………………………………….....................20 3-4 Photocurrent of Au-peapodded Ga2O3 nanowires under no bias 23 3-5 The photocurrent at different wavelength of 532nm and 632nm 23 3-6 The effect of gold particles on photo-current 25 3-7 Room-temperature photoluminescence spectra of Au-peapodded Ga2O3 nanowires and pure β-Ga2O3 nanowires 26 3-8 XPS of Au-peapodded Ga2O3 nanowires and pure β-Ga2O3 nanowires 27 Chapter 4 Summary and Conclusions 29 PartⅠPhotoresponse of gold-peapodded Ga2O3 nanowires 29 PartⅡPhoto-generation of gold-peapoded Ga2O3 nanowires 30 References 31 Figure Captions 39 Table Captions 43 Figures 44 Tables………………………………………………………………………………………………………………...61

    References

    [1] Y. Huang, X. Duan, Y. Cui, and C. M. Lieber,
    “Gallium Nitride Nanowires and Nanodevices”
    Nano Lett., 2, p101 (2002)
    [2] K. L.Wang, S. Tong and H. J. Kim,
    “Properties and Applications of SiGe Nanodots”,
    Material Science in Semiconductor Processing, 8, p389 (2005)
    [3] T.I. Kamins; K. Nauka; L.H. Camnitz; J.B. Kruger; J.E. Turner; S.J. Rosner; M.P. Scott;
    J.L. Hoyt; C.A. King; D.B. Noble; J.F. Gibbons,
    “High frequency Si/Si1-xGex heterojunction bipolar transistors”,
    Technical Digest - International Electron Devices Meeting, 1989, p 647-650
    [4] S. J. Pearton, F. Ren, A. P. Zhang, and K. P. Lee,
    “Fabrication and performance of GaN electronic devices”
    Mater. Sci. Eng., R. 30, 55, (2000).
    [5] J. Oshinowo, M. Nishioka, S. Ishida, and Y. Arakawa,
    “Highly uniform InGaAs/GaAs quantum dots (approx.15 nm) by metalorganic chemical vapor deposition”
    Appl. Phys. Lett. 65, 1421 (1994)
    [6] K. Kamath, N. Chervela, K. K. Linder, T. Sosnowski, H-T. Jiang, T. Norris, and P. Bhattacharya,
    ”Photoluminescence and time-resolved photoluminescence characteristics of InxGa(1-x)As/GaAs self-organized single- and multiple-layer quantum dot laser structures”
    Appl. Phys. Lett. 71, 927 (1997)
    [7] S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, S. Charbonneau, D. Leonard, R. Leon, P. M. Petroff, and J. L. Merz,
    ” State filling and time-resolved photoluminescence of excited states in InxGa1-xAs/GaAs self-assembled quantum dots”
    Phys. Rev. B 54, 11548 (1996)
    [8] Donald J. Sirbuly, Matt Law, Haoquan Yan, and Peidong Yang
    “Eemiconductor Nanowires for Subwavelength Photonics Integration”
    J. Phys. Chem. B (2005) 109, 15190
    [9] Y. N. Xia, P. D. Yang, Y. A. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, H. Q. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications”,
    Adv. Mater, 15 353-389, (2003)
    [10] C. N. R. Rao, F. L. Deepak, Gautam Gundiah, A. Govindaraj,
    “Inorganic Nanowires”,
    Progress in Solid State Chem. 31, 5 (2003)
    [11] Z. R. Dai, Z. W. Pan, Z. L. Wang,
    “Novel Nanostructure of Functional Oxide Synthesized by Thermal Evaporation”,
    Adv. Funct. Mater. V13,n1, 9-24 (2003)
    [12] Yingjiu Zhang, Nanlin Wang, Shangpeng Gao, Rongrui He, Shu Miao, Jun Liu, Jing Zhu, X. Zhang,
    “A Simple Method To Synthesize Nanowires”,
    Chem. Mater. 14, 3564 (2002)
    [13] R.S. Wangner , and W.C.Ellis
    “Vapor Liquid Solid Mechanism of Single Crystal Growth”
    Appl.Phys.Lett. , 4,89(1964)
    [14] M.Morales, and C.M. Liber,
    “A Laser Ablation Method for the synthesis of Crystalline Semiconductor Nanowires”
    Science, 279,208-211(1998)
    [15] Y.Liu, and M. Liu
    “Growth of Aligned Square-Shaped SnO2 Tube Arrays”
    Advanced Functional Materials ,15,57-62(2005)
    [16] Xu Xiang, Chuan-Bao Cao , Ya-Jun Guo, He-Sun Zhu
    “A simple method to synthesize gallium oxide nanosheets and nanobelts”
    Chemical Physics Letters, 378,660-64(2003)
    [17] H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai , J. J. Wang , D.P. Yu, Y. Ding, Q.L. Hang, and S. Q. Feng
    “Ga2O3 nanowires prepared by physical evaporation”
    Solid State Communications, 109,677-682(1999)
    [18] Wensheng Shi, Yufeng Zheng, Ning Wang, Chun-Sing Lee,and Shuit-Tong Lee
    “A General Synthetic Route to III-V Compound Semiconductor Nanowires”
    Adv. Mater. 2001, 13, No. 8, April 18 591-594
    [19] S.T. Lee; Y.F. Zhang; N. Wang; Y.H. Tang; I. Bello; C.S. Lee; Y.W. Chung
    “Semiconductor nanowires from oxides”
    Journal of Materials Research, v 14, n 12, Dec, 1999, p 4503-4507
    [20] Y. F. Zhang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello, and S. T. Lee
    “Germanium nanowires sheathed with an oxide layer”
    VOLUME 61, NUMBER 7 PHYSICAL REVIEWB 4518-4521
    [21] Rui-Qin Zhang, Yeshayahu Lifshitz, and Shuit-Tong Lee
    “Oxide-Assisted Growth of Semiconducting Nanowires”
    Adv.Mater.2003,15,No.7-8,635-640
    [22] D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, S. T. Lee
    “Small-Diameter Silicon Nanowire Surfaces“
    Science, 21 vol 299 1874-1877(2003)
    [23] H. Dai, E.W. Wong, Y.Z. Lu, S.Fan, and C.M. Liber
    “Synthesis and characterization of carbide”
    Nature 375,769(1995)
    [24] Weiqiang Han, Shoushan Fan, Qunqing Li, Yongdan Hu
    “Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube–Confined Reaction”
    Science, vol 277 29 1287-1289 (1997)
    [25] N. Ueda, H. Hosono, R.Waseda, and H. Kawazoe,
    “Anisotropy of electrical and optical properties in β-Ga2O3 single crystals,”
    Appl. Phys. Lett., vol. 71, pp. 933–935, Aug. 1997.
    [26] S. Geller
    “Crystal structure of β-Ga2O3”
    J.Chem .phy. 33.676(1960)
    [27] JCPDS card : 41-1103
    [28] M. Fleischer, J. Giber, and H. Meixner,
    “H induced changes in electrical conductance of β-Ga2O3 thin film system,”
    Appl. Phys. A, vol.54, pp. 560–566, 1992.
    [29] M. Fleischer and H. Meixner,
    “Sensing reducing gases at high temperatures using long-term stable Ga2O3 thin films,”
    Sens. Actuators B, vol.6, no. 1–3, pp. 257–261, 1992.
    [30] Min-Feng Yu, Massood Z. Atashbar, Senior Member, IEEE, and Xiaolong Chen,
    “Mechanical and Electrical Characterization of β-Ga2O3 Nanostructures for Sensing Applications,”
    IEEE SENSORS JOURNAL, VOL. 5, NO. 1, FEBRUARY 2005
    [31] Z. W. Pan, Z. R. Dai, and Z. L. Wang,
    “Nanobelts of semiconducting oxides,”
    Science, vol. 291, pp. 1947–1949, Mar. 2001.
    [32] H. Z. Zhang, Y. C. Kong, Y. Z.Wang, X. Du, Z. G. Bai, J. J.Wang, D. P.Yu, Y. Ding, Q. L. Hang, and S. Q. Feng,
    “Ga2O3 nanowires prepared by physical evaporation,”
    Solid State Commun., vol. 109, pp. 677–682, 1999.
    [33] Y. C. Choi, W. S. Kin, Y. S. Park, S. M. Lee, D. J. Bal, Y. H. Lee, G.S. Park, W. B. Choi, N. S. Lee, and J. M. Kim,
    “Catalytic growth of β-Ga2O3 nanowires by arc discharge,”
    Adv. Mater., vol. 12, no. 10, pp.746–750, 2000.
    [34] Xu Xiang, Chuan-Bao Cao, He-Sun Zhu,
    “ Synthesis and photoluminescence of gallium oxide ultra-long nanowires and thin nanosheets,”
    Journal of Crystal Growth 279 (2005) 122–128
    [35] L.Binet, D. Gourier,
    “ORIGIN OF THE BLUE LUMINESCENCE OF β-Ga2O3”
    J. Phys. Chem. Solids 59 (1998) 1241.
    [36] JCPDS card: No.02-1078
    [37] Weiqiang Han; Shoushan Fan; Qunqing Li; Yongdan Hu
    “Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction”
    Science 1997, 277, 1287.
    [38] G.S.Cheng, L.D. Zhang, Y.Zhu,and G.T. Fei
    “Ordered nanostructure of single-crystalline GaN nanowires in a honeycomb structure of anodic alumona”
    J.Mater. Res. 15,2 (2002).
    [39] Xiang feng Duan, and C.M. Liber
    “Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires”
    J.Am.Chem.Soc.122,188(2002)
    [40] Maoqi He ,Indira Minus, Piezhen Zhou, S. Noor Mohammed, and Joshua B. Halpern Randy Jacobs, Wendy L. Sarney, Lourdes Salamanca-Riba , and R. D. Vispute
    “Growth of large-scale GaN nanowires and tubes by direct reaction of Ga with NH3”
    Appl.Phys.Lett.77,23 ,3731-3733,(2000)
    [41] H.M. Kim, D.S. Kim, Y.S. Park, D.Y. Kim, T.W. Kang, and K.S.Chung
    “Growth of GaN nanorod by a Hydride Vapor Phase Epitaxy Method”
    Adv. Mater. , 14 ,991(2002)
    [42] Palph M. Potter, John M.Blank, and Arrigo Addamiano
    “Silicon Carbide Light-Emitting Diodes”
    Journal of Applied Physics. 40,2253(1969)
    [43] M. Law, H. Kind, B. Messer, F. Kim and P. Yang:
    “Photochemical Sensing of NO2 with SnO2 Nanoribbon Nanosensors at Room Temperature”
    Angew.Chem. Int. Ed. 41 (2002) 2405.
    [44] D. S. Lee, J. H. Lee, Y. H. Lee and D. D. Lee
    “GaN thin film as gas sensors”
    Sens. Actuat. B 89(2003) 306.
    [45] A. Aviram and M. A. Ratner,
    “Molecular Rectifiers,”
    Chem. Phys. Lett., 29 (1974)
    [46] C. Joachim, J. K. Gimzewski , R. R. Schittler and C. Chavy.
    “Electronic Transparence of A Single C60 Molecule,”
    Phys. Rev. Lett., 74, p2102 (1995)
    [47] S.F. Hu, W.Z. Wong, S.S. Liu, Y.C. Wu, C.L. Sung , T.Y. Huang, T.J. Yang
    “A Silicon Nanowire With a Coulomb Blockade Effect at Room Temperature,”
    Adv. Mater., 14, p736 (2002)
    [48] Raffaella Calarco, Michel Marso, Thomas Richter, Ali I. Aykanat, Ralph Meijers, Andre´ v.d. Hart, Toma Stoica, and Hans Luth
    “Size-Dependent Photoconductivity in MBE-Grown GaN Nanowires,”
    Nano letters (2005)
    [49] J. Teresoff,
    “Contact Resistance of Carbon Nanotubes,”
    Appl. Phys. Lett., 74, p2122 (1999)
    [50] A. N. Andriotis, M. Menon, and G. E. Froudakis,
    “Various Bonding Configurations of Transition-Metal Atoms on Carbon Nanotubes: Their Effect on Contact Resistance,”
    Appl. Phys. Lett., 76, p3890 (2000)
    [51] Y. Zhang, T. Ichihashi, E. Landree, F. Nihey and S. Iijima,
    “Heterostructures of Single-Walled Carbon Nanotubes and Carbide Nanorods,”
    Science, 285, p1719 (1999)
    [52] M. Henny, C. Terrier, C. Strunk, J.-P. Salvetat, J.-M. Bonard, and L. Forro
    “Contacting Carbon Nanotubes Selectively with Low Ohmic Contacts for Four Probe Electric Measurements”
    Appl. Phys. Lett., Vol. 73, No. 2, 13 July 1998
    [53] BIACORE AB BIACORE Technology Handbook. (1998).
    [54] M. S. Hu, H. L. Chen, C. H. Shen et al,
    “Photosensitive gold-nanoparticle-embedded dielectric nanowires,”
    Nature materials letters,5 ,p102(2006)
    [55] J. W. G. Wildaer, L. C. Venama, A. G. Rinzler, R. E. Smalley, C. Dekker,
    “Electronic Structure of Atomically Resolved Carbon Nanotubes,”
    Nature, 391, p59 (1998)
    [56] K. Berthold, R. A. Hopfel , and E. Gornik
    “Surface plasmon polariton enhanced photoconductivity of tunnel junctions in the visible,”
    Appl. Phys. Lett.46 (7), 1 April 1985
    [57] K. Berthold, W. Beinstingl, R. Berger, and E. Gornik
    “Surface plasmon enhanced quantum efficiency of metal-insulator-semiconductor junctions in the visible”
    Appl. Phys. Lett.48 (8), 24 February 1986
    [58] Xu Xiang, Chuan-Bao Cao, He-Sun Zhu
    “Synthesis and photoluminescence of gallium oxide ultra-long nanowires and thin nanosheets”
    Journal of Crystal Growth 279(2005)122-128
    [59] T. Harwig, G.J. Wubs, G.J. Dirksen,
    “Electrical properties of β-Ga2O3 single crystals”
    Solid State Commun. 18 (1976) 1223.
    [60] V.I. Vasil’tsiv , Ya.M. Zakharko, Sov.
    “Self-localized electron excitations in single crystals”
    Phys. Solid State 25 (1983) 72.
    [61] A.I. Kuznetsov, V.N. Abramov, T.V. Uibo,
    “X-ray-luminescence and thermoluminescence evidence for self-trapping in Y2O3 and β-Ga2O3”
    Opt. Spectrosc.(USSR) 58 (1985) 368
    [62] A.M. Venezia,
    “X-ray photoelectron spectroscopy (XPS) for catalysts characterization”
    Catal. Today 77 (2003) p. 359
    [63] Efraín Altamirano, José Antonio de los Reyes,
    “Hydrodesulfurization of dibenzothiophene and 4,6-dimethyl-dibenzothiophene: Gallium effect over NiMo/Al2O3 sulfided catalysts”
    Journal of Catalysis 235 (2005) 403–412

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE