簡易檢索 / 詳目顯示

研究生: 邱惟琦
Chiu, Wei-Chi
論文名稱: 以摻合方法調控含醣基嵌段寡聚物之自組裝結構
Tuning the Self-Assembled Structure via Binary Blending of Sugar-Based Block Oligomers
指導教授: 陳信龍
Chen, Hsin-Lung
口試委員: 陳俊太
Chen, Jiun-Tai
朱哲毅
Chu, Che-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 116
中文關鍵詞: 含醣基嵌段共聚物自組裝非典型球狀結構雙相混摻
外文關鍵詞: Sugar-based block copolymer, self-assembly, Frank-Kasper phase, binary blending
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由具親水性寡聚醣類作為頭基和相對較為疏水的尾基所構成之含醣基雙親性分子,也稱含醣基嵌段共聚物(BCP),因其得以自組裝成多種有序之結構,被廣泛合成並應用於不同領域。而由於醣基本身較大之剛性和體積,兩個嵌段之間具強烈不相容性,使含醣基BCPs具有相對較高之χ值,因而驅使分子在寡聚物區間便能微相分離,產生超小尺度之有序結構。在應用層面上,近年來BCP自組裝之特性被應用於微影製程中,用以設計出奈米級尺度的裝置,而含醣基BCPs因自身的特性使其成為形成超小有序奈米結構的絕佳候選者。另外,此類含醣基BCPs也已被發現能形成非典型球狀結構,例如 Frank-Kasper (FK) 相。FK相最初是用來解釋合金所形成的複雜晶格結構而定義出來的,近年來在構象不對稱的BCP系統中也被證實該結構的存在,包含、 A15和 Laves 等相。而含醣基BCPs兩嵌段之間剛硬程度的差異和分子結構的不同導致先天上的高度構象不對稱性,似乎符合得以產生FK 相的標準。除此之外,有關於BCPs混摻的理論計算和實驗結果也揭示組份的不均勻分佈將影響相域的大小及形狀,並從而促進FK相的形成。在此,我們探索了在純的狀態下具有不同分子架構的含醣基嵌段寡聚物 (BCOs,為相對低聚和度之分子) 之相行為,並進一步研究了它們的混合物 (binary blends)的相結構。
    在本論文中,我們將展示三種含醣基BCOs之相行為,分別為具有 miktoarm星形結構的glucose1-block-[oligo(isoprene)]2 (簡稱 (Glc1-b-(OI)2, G1)) 及glucose2-block-[oligo(isoprene)]2 (簡稱Glc2-b-(OI)2, G2) 和線性的 glucose2-block-oligo(isoprene) (簡稱Glc2-b-OI, G2S1)。另外,我們也同樣研究了由上述三種分子的混摻系統。整體而言,我們聚焦於由 Glc 構成核心和 OI 構成冠狀部分所組成的球狀微胞的排列結構。我們發現,含醣重量分率(wtGlc)為0.125的G1,在升溫過程中從類液相(LLP) 轉變為十二邊形準晶相 (DDQC),再轉變為 BCC相。至於wtGlc為0.199 的 G2,其於30 oC時呈現六邊柱狀堆積 (HEX) ,接著隨著加熱經歷LLP  DDQC  σ的相轉換。G1和G2兩者皆呈現DDQC轉FK σ 相的相變,其中FK σ 相於G1中僅在 DDQC 經退火處理後才出現。如此的相變與先前文獻中所指出DDQC為形成穩定σ相過程中的亞穩態的觀點一致。至於G1和G2兩者的混摻部分,由實驗所建構出來的相圖與理論計算是一致的。再者,我們也在G2比例較高的混摻中發現了σ相於降溫過程中轉換為Laves相的相轉換。另一部分,我們聚焦於G1與wtGlc為0.331的G2S1系統。純的G2S1於升溫過程中呈現HPLABC → HPLABC/HEX → DG/HEX的相轉換。此外,由實驗所建構出的混摻相圖表明,混摻得以有效的改變微胞的曲率,甚至促使FK A15相的形成。FK A15相是於wtGlc為0.200至0.228的混摻中生成,且其相變呈現“BCC → σ → A15 → HEX”的轉換。就兩個混摻系統而言,兩者的相圖都與先前的理論計算和實驗結果一致,並顯示出一系列穩定的 FK 相。另外,我們也主張醣基之間的氫鍵作用力會驅使醣基彼此平行堆積,從而更易於形成有利於構成FK相的多面體界面。
    總結來說,我們的實驗結果表明,含醣基嵌段寡聚物本身即得以建構出FK相。且混摻的結果顯示,與傳統合成方法相比,共混不僅提供了一種控制相行為的有效策略,而且還得以促使非典型的 FK 相的生成。本研究中發展的概念和方法可用於創建其他準晶相或 FK 相以開發功能性奈米材料。


    Sugar-based block copolymer (BCP) consisting of a hydrophilic oligo-saccharide head group and a hydrophobic tail group have been broadly synthesized and applied in different fields due to their potential to self-assemble into numerous ordered structures. With the intrinsic rigidity and bulkiness of sugar moiety that gives rise to the strong incompatibility between the two constituent blocks, sugar-based BCPs possess a relatively high χ value which drives microphase separation in the oligomeric regime to yield the ordered nanostructures with ultra-small feature size. Recently, the self-assembly behavior of BCP has been employed in the “bottom-up” approach of the lithography process which requires nano-scale feature size for designing devices. The characteristics of sugar-based BCPs make them plausible candidates for developing lithographic templates with ultra-small nanostructures. Sugar-based BCPs have also been identified to form noncanonical structures such as Frank-Kasper (FK) phase. FK phase was first developed to describe the complex crystalline phase formed by metallic alloys and has lately been identified in conformationally asymmetric BCPs, including , A15, and Laves phases. Given the intrinsically large conformational asymmetry arising from the disparity in chain stiffness between the two blocks and the diverse accessible molecular architectures, sugar-based BCPs appear to meet the criterion for creating FK phase. Besides, predictions and experiments regarding the blends of BCPs revealed that the inhomogeneous distribution of the constituents could regulate the size and shape of the domains, thus facilitating the formation of FK phase. Here we explore the phase behavior of compositionally asymmetric sugar-based block co-oligomer (BCO, due to the relatively low degree of polymerization) with different architectures in the neat state and their binary blends.
    In this thesis, we present the phase behavior of three sugar-based BCOs, including glucose1-block-[oligo(isoprene)]2 (Glc1-b-(OI)2, G1) and glucose2-block-[oligo(isoprene)]2 (Glc2-b-(OI)2, G2) bearing miktoarm star architecture and the linear glucose2-block-oligo(isoprene) (Glc2-b-OI, G2S1). Two binary blending systems based on the three BCOs were also studied. Here we focused on the packing structures of the spherical micelles composed of Glc core and OI corona. Neat G1 with the weight fraction of the sugar block wtGlc = 0.125 was found to transform from a liquid-like packing (LLP) phase to dodecagonal quasicrystal (DDQC) then to BCC phase upon heating. As for G2 with wtGlc = 0.199, it first exhibited HEX morphology at 30 oC then went through an LLP  DDQC  σ phase transition. FK σ phase was observed to be transformed from DDQC phase in both neat G1 and G2, where the σ-phase in G1 only appeared after the annealing process from DDQC. Such a transition was aligned with the previous studies showing that DDQC was a kinetically trapped structure while organizing into the equilibrium σ phase. As to the blends of G1 and G2, the overall phase diagram constructed experimentally is qualitatively consistent with the one calculated by self-consistent field theory (SCFT). Moreover, it was interesting that Laves phases emerged from σ phase in neat G2 and in the G2-rich blends in the stepwise cooling process.
    In the second part of the study, we investigated G1 and G2S1 with wtGlc = 0.331 in neat state and their blends. Neat G2S1 exhibited the phase transition of HPLABC → HPLABC/HEX → DG/HEX in the heating process. Moreover, the phase diagram of the blends shows that the curvature of the micelle could be changed effectively via blending and even triggered the formation of FK A15 phase. The FK A15 phase was observed in the blends with wtGlc = 0.200 - 0.228 and showed a “BCC → σ → A15 → HEX” phase transition pathway. All in all, both the phase diagrams of the blends agreed with the theoretical and experimental results disclosed previously and showed a series of stable FK phases. Besides, we also claimed that hydrogen bonding between the sugar moiety would drive the oligosaccharide block to pack parallelly with each other, leading to easy access to the polyhedral interface that favors FK phase formation.
    In conclusion, we disclosed that sugar-based BCOs can construct all types of FK phases having discovered in BCP. The results of the binary blends demonstrated that not only does blending provide an effective strategy for controlling the phase behavior, but it also allows the easy formation of non-canonical FK phases compared to the traditional synthetic method. The concepts and methodology developed here fill up the gap between conventional coil-coil BCPs and sugar-based BCOs which may be implemented to create other quasicrystalline or FK phases for the development of functional nano-scale materials.

    Abstract I 摘要 IV Acknowledgement VI Table of Contents VIII List of Tables X List of Figures XI Chapter 1. General Introduction 1 1.1 Microphase Separation of Block Copolymer 1 1.2 Conventional Phase Behavior of Diblock Copolymer 3 1.2.1 Conventional Spherical phases of Block Copolymer 6 1.2.2 Conventional Complex Phases of Block Copolymer 7 1.3 Frank-Kasper Phases 11 1.3.1 Frank-Kasper σ phase 14 1.3.2 Dodecagonal quasicrystal (DDQC) 14 1.3.3 Other Frank-Kasper Phases in Block Copolymer 17 1.4 Phase Behavior of Block Copolymers with conformational asymmetry 20 1.4.1 Block Copolymers with Different Statistical Segment Lengths 21 1.4.2 Block Copolymers with Different Architecture 24 1.5 Phase Behavior of the Mixtures of BCPs 30 1.5.1 Phase Behavior of Block Copolymers and Homopolymers Blends 30 1.5.2 Phase Behavior of the Blends of Block Copolymers and Selective Solvents 32 1.5.3 Phase Behavior of Binary Blends 34 1.6 Sugar-Based Molecules 37 1.6.1 Rod-Coil Block Copolymers 37 1.6.2 Sugar-Based Molecules in Surfactant System 38 1.6.3 Sugar-Based Molecules in Block Copolymers 39 1.7 Research Motivation 44 Chapter 2. Phase Behavior of the Binary Blends of Compositionally Asymmetric Sugar-based Block Oligomers 45 2.1 Introduction 45 2.2 Experimental Section 49 2.2.1 Materials 49 2.2.2 Small Angle X-ray Scattering (SAXS) Measurement 51 2.2.3 Wide Angle X-ray Scattering (WAXS) Measurement 51 2.3 Results & Discussion 53 2.3.1 Phase Behavior of Glc1-b-(OI)2 and Glc2-b-(OI)2 in the Neat State 53 2.3.2 Phase Behavior of the Binary Blends of Glc1-b-(OI)2 and Glc2-b-(OI)2 69 2.3.3 Phase Behavior of Glc2-b-(OI)1 in the Neat State 84 2.3.4 Phase Behavior of the Binary Blends of Glc1-b-(OI)2 and Glc2-b-(OI)1 87 Chapter 3. Overall Summary 97 Reference 100 SI Appendix 111

    (1) Leibler, L. Theory of Microphase Separation in Block Copolymers. Macromolecules 1980, 13 (6), 1602-1617.
    (2) Bates, F. S.; Fredrickson, G. H. Block Copolymers—Designer Soft Materials. Physics today 1999, 52 (2), 32-38.
    (3) Grason, G. M. The packing of soft materials: Molecular asymmetry, geometric frustration and optimal lattices in block copolymer melts. Physics reports 2006, 433 (1), 1-64.
    (4) Fredrickson, G. H.; Helfand, E. Fluctuation effects in the theory of microphase separation in block copolymers. The Journal of chemical physics 1987, 87 (1), 697-705.
    (5) Helfand, E. Block Copolymer Theory. III. Statistical Mechanics of the Microdomain Structure. Macromolecules 1975, 8 (4), 552-556.
    (6) Helfand, E.; Wasserman, Z. R. Block Copolymer Theory. 4. Narrow Interphase Approximation. Macromolecules 1976, 9 (6), 879-888.
    (7) Helfand, E.; Wasserman, Z. R. Block Copolymer Theory. 5. Spherical Domains. Macromolecules 1978, 11 (5), 960-966.
    (8) Helfand, E.; Wasserman, Z. Block Copolymer Theory. 6. Cylindrical Domains. Macromolecules 1980, 13 (4), 994-998.
    (9) Brazovskii, S. A. Phase transition of an isotropic system to an inhomogeneous state. Sov. Phys. JETP 1975, 41 (1), 85-89.
    (10) Matsen, M. W.; Schick, M. Stable and unstable phases of a diblock copolymer melt. Physical review letters 1994, 72 (16), 2660-2663.
    (11) Bates, F. S.; Schulz, M. F.; Khandpur, A. K.; Förster, S.; Rosedale, J. H.; Almdal, K.; Mortensen, K. Fluctuations, conformational asymmetry and block copolymer phase behaviour. Faraday discussions 1994, 98, 7-18.
    (12) Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Thomas, E. L.; Fetters, L. J. A Reevaluation of Bicontinuous Cubic Phases in Starblock Copolymers. Macromolecules 1995, 28 (7), 2570-2573.
    (13) Matsen, M. W.; Bates, F. S. Origins of Complex Self-Assembly in Block Copolymers. Macromolecules 1996, 29 (23), 7641-7644.
    (14) Matsen, M. W.; Bates, F. S. Unifying Weak- and Strong-Segregation Block Copolymer Theories. Macromolecules 1996, 29 (4), 1091-1098.
    (15) Kittel, C. Introduction to solid state physics 8ed.; John Wiley & Sons: New York, NY, 2004.
    (16) Mahynski, N. A.; Kumar, S. K.; Panagiotopoulos, A. Z. Relative stability of the FCC and HCP polymorphs with interacting polymers. Soft matter 2015, 11 (2), 280-289.
    (17) Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L.; Fetters, L. J. The Gyroid: A New Equilibrium Morphology in Weakly Segregated Diblock Copolymers. Macromolecules 1994, 27 (15), 4063-4075.
    (18) Schoen, A. H. Infinite periodic minimal surfaces without self-intersections. NASA technical note: 1970.
    (19) Hajduk, D. A.; Takenouchi, H.; Hillmyer, M. A.; Bates, F. S.; Vigild, M. E.; Almdal, K. Stability of the Perforated Layer (PL) Phase in Diblock Copolymer Melts. Macromolecules 1997, 30 (13), 3788-3795.
    (20) Ahn, J.-H.; Zin, W.-C. Structure of Shear-Induced Perforated Layer Phase in Styrene−Isoprene Diblock Copolymer Melts. Macromolecules 2000, 33 (2), 641-644.
    (21) Frank, F. C. K., J. S. Complex alloy structures regarded as sphere packings. I. Definitions and basic principles. Acta Crystallographica 1958, 11, 184-190.
    (22) Frank, F. C.; Kasper, J. S. Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures. Acta Crystallographica 1959, 12 (7), 483-499.
    (23) Reddy, A.; Buckley, M. B.; Arora, A.; Bates, F. S.; Dorfman, K. D.; Grason, G. M. Stable Frank–Kasper phases of self-assembled, soft matter spheres. Proceedings of the National Academy of Sciences - PNAS 2018, 115 (41), 10233-10238.
    (24) Sluiter, M. H. F., Pasturel, A., & Kawazoe, Y. Prediction of site preference and phase stability of transition metal based frank-kasper phases. In Science of Complex Alloy Phases Symposium - TMS 2005 Annual Meeting, San Francisco, CA, United States.; 2005.
    (25) Bates, M. W.; Lequieu, J.; Barbon, S. M.; Lewis, r. R. M.; Delaney, K. T.; Anastasaki, A.; Hawker, C. J.; Fredrickson, G. H.; Bates, C. M. Stability of the A15 phase in diblock copolymer melts. Proceedings of the National Academy of Sciences - PNAS 2019, 116 (27), 13194-13199.
    (26) Ungar, G.; Liu, Y.; Zeng, X.; Percec, V.; Cho, W.-D. Giant Supramolecular Liquid Crystal Lattice. Science 2003, 299 (5610), 1208-1211.
    (27) Lee, S.; Bluemle, M. J.; Batest, F. S. Discovery of a Frank-Kasper σ Phase in Sphere-Forming Block Copolymer Melts. Science (American Association for the Advancement of Science) 2010, 330 (6002), 349-353.
    (28) Lee, S.; Leighton, C.; Bates, F. S. Sphericity and symmetry breaking in the formation of Frank–Kasper phases from one component materials. Proceedings of the National Academy of Sciences 2014, 111 (50), 17723-17731.
    (29) Gillard, T. M.; Lee, S.; Bates, F. S. Dodecagonal quasicrystalline order in a diblock copolymer melt. Proceedings of the National Academy of Sciences 2016, 113 (19), 5167-5172.
    (30) Schulze, M. W.; Lewis, R. M.; Lettow, J. H.; Hickey, R. J.; Gillard, T. M.; Hillmyer, M. A.; Bates, F. S. Conformational Asymmetry and Quasicrystal Approximants in Linear Diblock Copolymers. Physical review letters 2017, 118 (20), 207801-207801.
    (31) Jeon, S.; Jun, T.; Jo, S.; Ahn, H.; Lee, S.; Lee, B.; Ryu, D. Y. Frank–Kasper Phases Identified in PDMS‐ <i>b</i> ‐PTFEA Copolymers with High Conformational Asymmetry. Macromolecular Rapid Communications 2019, 40 (19), 1900259.
    (32) Mueller, A. J.; Lindsay, A. P.; Jayaraman, A.; Lodge, T. P.; Mahanthappa, M. K.; Bates, F. S. Quasicrystals and Their Approximants in a Crystalline–Amorphous Diblock Copolymer. Macromolecules 2021, 54 (6), 2647-2660.
    (33) Lindsay, A. P.; Jayaraman, A.; Peterson, A. J.; Mueller, A. J.; Weigand, S.; Almdal, K.; Mahanthappa, M. K.; Lodge, T. P.; Bates, F. S. Reevaluation of Poly(ethylene-<i>alt</i>-propylene)-<i>block</i>-Polydimethylsiloxane Phase Behavior Uncovers Topological Close-Packing and Epitaxial Quasicrystal Growth. ACS Nano 2021, 15 (6), 9453-9468.
    (34) Lachmayr, K. K.; Sita, L. R. Small‐Molecule Modulation of Soft‐Matter Frank–Kasper Phases: A Method for Adding Function to Form. Angewandte Chemie (International ed.) 2020, 59 (9), 3563-3567.
    (35) Mueller, A. J.; Lindsay, A. P.; Jayaraman, A.; Lodge, T. P.; Mahanthappa, M. K.; Bates, F. S. Emergence of a C15 Laves Phase in Diblock Polymer/Homopolymer Blends. ACS macro letters 2020, 9 (4), 576-582.
    (36) Takagi, H.; Hashimoto, R.; Igarashi, N.; Kishimoto, S.; Yamamoto, K. Frank-Kasper σ phase in polybutadiene-poly(ε-caprolactone) diblock copolymer/polybutadiene blends. Journal of physics. Condensed matter 2017, 29 (20), 204002-204002.
    (37) Lindsay, A. P.; Lewis, R. M.; Lee, B.; Peterson, A. J.; Lodge, T. P.; Bates, F. S. A15, σ, and a Quasicrystal: Access to Complex Particle Packings via Bidisperse Diblock Copolymer Blends. ACS Macro Letters 2020, 9 (2), 197-203.
    (38) Yamamoto, K.; Takagi, H. Frank-Kasper σ and A-15 Phases Formed in Symmetry and Asymmetry Block Copolymer Blend System. MATERIALS TRANSACTIONS 2021, 62 (3), 325-328.
    (39) Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Physical review letters 1984, 53 (20), 1951.
    (40) Steurer, W. Twenty years of structure research on quasicrystals. Part I. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals. Zeitschrift für Kristallographie-Crystalline Materials 2004, 219 (7), 391-446.
    (41) Tsai, A. P. Icosahedral clusters, icosaheral order and stability of quasicrystals—a view of metallurgy. Science and Technology of Advanced Materials 2008, 9 (1), 013008.
    (42) Ungar, G.; Zeng, X. Frank–Kasper, quasicrystalline and related phases in liquid crystals. Soft Matter 2005, 1 (2), 95.
    (43) Hayashida, K.; Dotera, T.; Takano, A.; Matsushita, Y. Polymeric Quasicrystal: Mesoscopic Quasicrystalline Tiling in A B C Star Polymers. Physical Review Letters 2007, 98 (19), 195502.
    (44) Fischer, S.; Exner, A.; Zielske, K.; Perlich, J.; Deloudi, S.; Steurer, W.; Lindner, P.; Förster, S. Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry. Proceedings of the National Academy of Sciences 2011, 108 (5), 1810-1814.
    (45) Zhang, J.; Bates, F. S. Dodecagonal quasicrystalline morphology in a poly (styrene-b-isoprene-b-styrene-b-ethylene oxide) tetrablock terpolymer. Journal of the American Chemical Society 2012, 134 (18), 7636-7639.
    (46) Kim, K.; Schulze, M. W.; Arora, A.; Lewis, R. M.; Hillmyer, M. A.; Dorfman, K. D.; Bates, F. S. Thermal processing of diblock copolymer melts mimics metallurgy. Science 2017, 356 (6337), 520-523.
    (47) Takagi, H.; Yamamoto, K. Phase Boundary of Frank–Kasper σ Phase in Phase Diagrams of Binary Mixtures of Block Copolymers and Homopolymers. Macromolecules 2019, 52 (5), 2007-2014.
    (48) Chanpuriya, S.; Kim, K.; Zhang, J.; Lee, S.; Arora, A.; Dorfman, K. D.; Delaney, K. T.; Fredrickson, G. H.; Bates, F. S. Cornucopia of Nanoscale Ordered Phases in Sphere-Forming Tetrablock Terpolymers. ACS Nano 2016, 10 (5), 4961-4972.
    (49) Yue, K.; Huang, M.; Marson, R. L.; He, J.; Huang, J.; Zhou, Z.; Wang, J.; Liu, C.; Yan, X.; Wu, K. Geometry induced sequence of nanoscale Frank–Kasper and quasicrystal mesophases in giant surfactants. Proceedings of the National Academy of Sciences 2016, 113 (50), 14195-14200.
    (50) Huang, M.; Hsu, C.-H.; Wang, J.; Mei, S.; Dong, X.; Li, Y.; Li, M.; Liu, H.; Zhang, W.; Aida, T.; et al. Selective assemblies of giant tetrahedra via precisely controlled positional interactions. Science 2015, 348 (6233), 424-428.
    (51) Su, Z.; Huang, J.; Shan, W.; Yan, X.-Y.; Zhang, R.; Liu, T.; Liu, Y.; Guo, Q.-Y.; Bian, F.; Miao, X.; et al. Constituent Isomerism-Induced Quasicrystal and Frank–Kasper σ Superlattices Based on Nanosized Shape Amphiphiles. CCS Chemistry 2021, 3 (5), 1434-1444.
    (52) Keys, A. S.; Glotzer, S. C. How do quasicrystals grow? Physical Review Letters 2007, 99 (23), 235503.
    (53) Jayaraman, A.; Baez-Cotto, C. M.; Mann, T. J.; Mahanthappa, M. K. Dodecagonal quasicrystals of oil-swollen ionic surfactant micelles. 2021, 118.
    (54) Kim, K.; Arora, A.; Lewis, R. M.; Liu, M.; Li, W.; Shi, A.-C.; Dorfman, K. D.; Bates, F. S. Origins of low-symmetry phases in asymmetric diblock copolymer melts. Proceedings of the National Academy of Sciences 2018, 115 (5), 847-854.
    (55) Lindsay, A. P.; Cheong, G. K.; Peterson, A. J.; Weigand, S.; Dorfman, K. D.; Lodge, T. P.; Bates, F. S. Complex Phase Behavior in Particle-Forming AB/AB' Diblock Copolymer Blends with Variable Core. Macromolecules 2021, 54, Medium: X.
    (56) Nouri, B.; Chen, C.-Y.; Huang, Y.-S.; Mansel, B. W.; Chen, H.-L. Emergence of a Metastable Laves C14 Phase of Block Copolymer Micelle Bearing a Glassy Core. Macromolecules 2021, 54 (19), 9195-9203.
    (57) Bates, M. W.; Barbon, S. M.; Levi, A. E.; Lewis, R. M.; Beech, H. K.; Vonk, K. M.; Zhang, C.; Fredrickson, G. H.; Hawker, C. J.; Bates, C. M. Synthesis and Self-Assembly of AB n Miktoarm Star Polymers. ACS macro letters 2020, 9 (3), 396-403.
    (58) Watanabe, M.; Asai, Y.; Suzuki, J.; Takano, A.; Matsushita, Y. Frank-Kasper A15 Phase Formed in ABn Block-Graft Copolymers with Large Numbers of Graft Chains. Macromolecules 2020, 53 (22), 10217-10224.
    (59) Weaire, D.; Phelan, R. A counter-example to Kelvin's conjecture on minimal surfaces. Philosophical Magazine Letters 1994, 69 (2), 107-110.
    (60) Shi, A. Frank Kasper Phases of Squishable Spheres and Optimal Cell Models. A. C. S. MacroLetters 2016.
    (61) Glaser, J.; Medapuram, P.; Beardsley, T. M.; Matsen, M. W.; Morse, D. C. Universality of Block Copolymer Melts. Physical Review Letters 2014, 113 (6).
    (62) Milner, S. T. Chain Architecture and Asymmetry in Copolymer Microphases. Macromolecules 1994, 27 (8), 2333-2335.
    (63) Grason, G. M.; DiDonna, B. A.; Kamien, R. D. Geometric theory of diblock copolymer phases. Physical review letters 2003, 91 (5), 058304-058304.
    (64) Xie, N.; Li, W.; Qiu, F.; Shi, A.-C. σ Phase Formed in Conformationally Asymmetric AB-Type Block Copolymers. ACS macro letters 2014, 3 (9), 906-910.
    (65) Chang, A. B.; Bates, F. S. Impact of Architectural Asymmetry on Frank–Kasper Phase Formation in Block Polymer Melts. ACS nano 2020, 14 (9), 11463-11472.
    (66) Vavasour, J. D.; Whitmore, M. D. Self-consistent field theory of block copolymers with conformational asymmetry. Macromolecules 1993, 26 (25), 7070-7075.
    (67) Matsen, M. W.; Bates, F. S. Conformationally asymmetric block copolymers. Journal of polymer science. Part B, Polymer physics 1997, 35 (6), 945-952.
    (68) Thomas, E. L.; Alward, D. B.; Kinning, D. J.; Martin, D. C.; Handlin, D. L.; Fetters, L. J. Ordered bicontinuous double-diamond structure of star block copolymers: a new equilibrium microdomain morphology. Macromolecules 1986, 19 (8), 2197-2202.
    (69) Grason, G. M.; Kamien, R. D. Interfaces in Diblocks:  A Study of Miktoarm Star Copolymers. Macromolecules 2004, 37 (19), 7371-7380.
    (70) Tselikas, Y.; Iatrou, H.; Hadjichristidis, N.; Liang, K. S.; Mohanty, K.; Lohse, D. J. Morphology of miktoarm star block copolymers of styrene and isoprene. The Journal of chemical physics 1996, 105 (6), 2456-2462.
    (71) Matsen, M. W. Stabilizing new morphologies by blending homopolymer with block copolymer. Physical review letters 1995, 74 (21), 4225-4228.
    (72) Matsen, M. W. Phase Behavior of Block Copolymer/Homopolymer Blends. Macromolecules 1995, 28 (17), 5765-5773.
    (73) Tanaka, H.; Hasegawa, H.; Hashimoto, T. Ordered structure in mixtures of a block copolymer and homopolymers. 1. Solubilization of low molecular weight homopolymers. Macromolecules 1991, 24 (1), 240-251.
    (74) Hashimoto, T.; Tanaka, H.; Hasegawa, H. Ordered structure in mixtures of a block copolymer and homopolymers. 2. Effects of molecular weights of homopolymers. Macromolecules 1990, 23 (20), 4378-4386.
    (75) Semenov, A. N. Phase equilibria in block copolymer-homopolymer mixtures. Macromolecules 1993, 26 (9), 2273-2281.
    (76) Liu, M.; Qiang, Y.; Li, W.; Qiu, F.; Shi, A.-C. Stabilizing the Frank-Kasper Phases via Binary Blends of AB Diblock Copolymers. ACS macro letters 2016, 5 (10), 1167-1171.
    (77) Hong, K. M.; Noolandi, J. Theory of phase equilibriums in systems containing block copolymers. Macromolecules 1983, 16 (7), 1083-1093.
    (78) Fredrickson, G. H.; Leibler, L. Theory of block copolymer solutions: nonselective good solvents. Macromolecules 1989, 22 (3), 1238-1250.
    (79) Olvera De La Cruz, M. Theory of microphase separation in block copolymer solutions. The Journal of chemical physics 1989, 90 (3), 1995-2002.
    (80) Whitmore, M. D.; Noolandi, J. Self-consistent theory of block copolymer blends : neutral solvent. The Journal of chemical physics 1990, 93 (4), 2946-2955.
    (81) Whitmore, M. D.; Vavasour, J. D. Self-consistent mean field theory of the microphase diagram of block copolymer/neutral solvent blends. Macromolecules 1992, 25 (7), 2041-2045.
    (82) Hanley, K. J.; Lodge, T. P.; Huang, C.-I. Phase Behavior of a Block Copolymer in Solvents of Varying Selectivity. Macromolecules 2000, 33 (16), 5918-5931.
    (83) Suo, T.; Yan, D.; Yang, S.; Shi, A.-C. A Theoretical Study of Phase Behaviors for Diblock Copolymers in Selective Solvents. Macromolecules 2009, 42 (17), 6791-6798.
    (84) Matsen, M. W.; Bates, F. S. One-Component Approximation for Binary Diblock Copolymer Blends. Macromolecules 1995, 28 (21), 7298-7300.
    (85) Wu, Z.; Li, B.; Jin, Q.; Ding, D.; Shi, A.-C. Microphase and Macrophase Separations in Binary Blends of Diblock Copolymers. Macromolecules 2011, 44 (6), 1680-1694.
    (86) Hashimoto, T.; Koizumi, S.; Hasegawa, H. Ordered Structure in Blends of Block Copolymers.2.Self-Assembly for Immiscible Lamella-Forming Copolymers. Macromolecules 1994, 27 (6), 1562-1570.
    (87) Court, F.; Hashimoto, T. Morphological Studies of Binary Mixtures of Block Copolymers. 2. Chain Organization of Long and Short Blocks in Lamellar Microdomains and Its Effect on Domain Size and Stability. Macromolecules 2002, 35 (7), 2566-2575.
    (88) Olsen, B. D.; Segalman, R. A. Self-assembly of rod–coil block copolymers. Materials science & engineering. R, Reports : a review journal 2008, 62 (2), 37-66.
    (89) Xiao, L.-L.; Zhou, X.; Yue, K.; Guo, Z.-H. Synthesis and Self-Assembly of Conjugated Block Copolymers. Polymers 2020, 13, 110.
    (90) Gaudin, T.; Lu, H.; Fayet, G.; Berthauld-Drelich, A.; Rotureau, P.; Pourceau, G.; Wadouachi, A.; Van Hecke, E.; Nesterenko, A.; Pezron, I. Impact of the chemical structure on amphiphilic properties of sugar-based surfactants: A literature overview. Advances in Colloid and Interface Science 2019, 270, 87-100.
    (91) Jung, J. H.; Do, Y.; Lee, Y.-A.; Shimizu, T. Self-Assembling Structures of Long-Chain Sugar-Based Amphiphiles Influenced by the Introduction of Double Bonds. Chemistry : a European journal 2005, 11 (19), 5538-5544.
    (92) Nguan, H. S.; Heidelberg, T.; Hashim, R.; Tiddy, G. J. T. Quantitative analysis of the packing of alkyl glycosides: a comparison of linear and branched alkyl chains. Liquid Crystals 2010, 37 (9), 1205-1213.
    (93) Vill, V.; Hashim, R. Carbohydrate liquid crystals: structure–property relationship of thermotropic and lyotropic glycolipids. Current Opinion in Colloid & Interface Science 2002, 7 (5), 395-409.
    (94) Aissou, K.; Otsuka, I.; Rochas, C.; Fort, S. b.; Halila, S.; Borsali, R. Nano-Organization of Amylose-b-Polystyrene Block Copolymer Films Doped with Bipyridine. Langmuir 2011, 27 (7), 4098-4103.
    (95) Otsuka, I.; Isono, T.; Rochas, C.; Halila, S.; Fort, S. b.; Satoh, T.; Kakuchi, T.; Borsali, R. 10 nm Scale Cylinder–Cubic Phase Transition Induced by Caramelization in Sugar-Based Block Copolymers. ACS macro letters 2012, 1 (12), 1379-1382.
    (96) Cushen, J. D.; Otsuka, I.; Bates, C. M.; Halila, S.; Fort, S. b.; Rochas, C.; Easley, J. A.; Rausch, E. L.; Thio, A.; Borsali, R.; et al. Oligosaccharide/Silicon-Containing Block Copolymers with 5 nm Features for Lithographic Applications. ACS nano 2012, 6 (4), 3424-3433.
    (97) Otsuka, I.; Tallegas, S.; Sakai, Y.; Rochas, C.; Halila, S.; Fort, S.; Bsiesy, A.; Baron, T.; Borsali, R. Control of 10 nm scale cylinder orientation in self-organized sugar-based block copolymer thin films. Nanoscale 2013, 5 (7), 2637-2641.
    (98) Isono, T.; Otsuka, I.; Suemasa, D.; Rochas, C.; Satoh, T.; Borsali, R.; Kakuchi, T. Synthesis, Self-Assembly, and Thermal Caramelization of Maltoheptaose-Conjugated Polycaprolactones Leading to Spherical, Cylindrical, and Lamellar Morphologies. Macromolecules 2013, 46 (22), 8932-8940.
    (99) Isono, T.; Otsuka, I.; Halila, S.; Borsali, R.; Kakuchi, T.; Satoh, T. Sub-20 nm Microphase-Separated Structures in Hybrid Block Copolymers Consisting of Polycaprolactone and Maltoheptaose. Journal of photopolymer science and technology 2015, 28 (5), 635-642.
    (100) Otsuka, I.; Zhang, Y.; Isono, T.; Rochas, C.; Kakuchi, T.; Satoh, T.; Borsali, R. Sub-10 nm Scale Nanostructures in Self-Organized Linear Di- and Triblock Copolymers and Miktoarm Star Copolymers Consisting of Maltoheptaose and Polystyrene. Macromolecules 2015, 48 (5), 1509-1517.
    (101) Isono, T.; Satoh, T.; Borsali, R. Rapid access to discrete and monodisperse block co-oligomers from sugar and terpenoid toward ultrasmall periodic nanostructures. Communications chemistry 2020, 3 (1).
    (102) Lachmayr, K. K.; Wentz, C. M.; Sita, L. R. An Exceptionally Stable and Scalable Sugar–Polyolefin Frank–Kasper A15 Phase. Angewandte Chemie (International ed.) 2020, 59 (4), 1521-1526.
    (103) Kasper, J. S. Theory of Alloy Phases. American Society of Metals 1956, 269.
    (104) Zeng, X.; Ungar, G.; Liu, Y.; Percec, V.; Dulcey, A. E.; Hobbs, J. K. Supramolecular dendritic liquid quasicrystals. Nature 2004, 428 (6979), 157-160.
    (105) Percec, V.; Imam, M. R.; Peterca, M.; Wilson, D. A.; Graf, R.; Spiess, H. W.; Balagurusamy, V. S. K.; Heiney, P. A. Self-Assembly of Dendronized Triphenylenes into Helical Pyramidal Columns and Chiral Spheres. Journal of the American Chemical Society 2009, 131 (22), 7662-7677.
    (106) Lodge, T. P.; Pudil, B.; Hanley, K. J. The Full Phase Behavior for Block Copolymers in Solvents of Varying Selectivity. Macromolecules 2002, 35 (12), 4707-4717.
    (107) Shi, A.-C.; Noolandi, J. Binary Mixtures of Diblock Copolymers. Phase Diagrams with a New Twist. Macromolecules 1995, 28 (9), 3103-3109.
    (108) Yamaguchi, D.; Takenaka, M.; Hasegawa, H.; Hashimoto, T. Macro- and Microphase Transitions in Binary Blends of Block Copolymers with Complementarily Asymmetric Compositions. Macromolecules 2001, 34 (6), 1707-1719.
    (109) Gillard, T. M. Phase Transitions and Fluctuations in Block Copolymer–Based Soft Materials. University of Minnesota, 2015.
    (110) Chen, X.-Q.; Wolf, W.; Podloucky, R.; Rogl, P.; Marsman, M. A new polymorphic material? Structural degeneracy of ZrMn2. Europhysics Letters (EPL) 2004, 67 (5), 807-813.
    (111) Li, W.; Duan, C.; Shi, A.-C. Nonclassical Spherical Packing Phases Self-Assembled from AB-Type Block Copolymers. ACS Macro Letters 2017, 6 (11), 1257-1262.
    (112) Xie, J.; Shi, A.-C. Formation of complex spherical packing phases in diblock copolymer/homopolymer blends. Giant 2021, 5, 100043.
    (113) Nowak, S. R.; Lachmayr, K. K.; Yager, K. G.; Sita, L. R. Stable Thermotropic 3D and 2D Double Gyroid Nanostructures with Sub‐2‐nm Feature Size from Scalable Sugar–Polyolefin Conjugates. Angewandte Chemie 2021, 133 (16), 8792-8798.
    (114) Park, I.; Lee, B.; Ryu, J.; Im, K.; Yoon, J.; Ree, M.; Chang, T. Epitaxial Phase Transition of Polystyrene-b-Polyisoprene from Hexagonally Perforated Layer to Gyroid Phase in Thin Film. Macromolecules 2005, 38 (25), 10532-10536.

    QR CODE