簡易檢索 / 詳目顯示

研究生: 康玳瑋
Kang, Dai-Wei
論文名稱: 石墨/環氧樹脂複合材料之機械性質與動態特性研究
Mechanical and Dynamic Properties of Graphite/Epoxy Composites
指導教授: 葉孟考
Yeh, Meng-Kao
戴念華
Tai, Nyan-Hwa
口試委員: 林明泉
蔡佳霖
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 96
中文關鍵詞: 複合材料石墨動態特性機械性質
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工業上的環氧樹脂普遍作為複合材料中之基材,但本身機械與電熱性質不佳,溫度與時間也會影響到環氧樹脂的機械性質,天然石墨具有耐高溫、優秀之機械性質、導電性與導熱性等優越之物理性質,最重要的是在價錢方面比起奈米碳管而言更為低廉。本研究首先探討純環氧樹脂在1、2、3 小時熱壓時間下,對於機械性質的影響;也探討分別添加150 μm天然石墨、官能化石墨與膨脹石墨對整體複合材料之機械性質與動態特性的影響。
    實驗結果顯示純環氧樹脂在溫度控制在120℃,熱壓時間2小時,其撓曲模數與撓曲強度上最佳;在純環氧樹脂中混入150 μm天然石墨、官能化石墨與膨脹石墨皆可有效提升複合材料撓曲模數與楊氏模數,其中補強效果為添加官能化石墨最優良,混入8 wt%的天然石墨,相較於純環氧樹脂撓曲模數可提升29.9%,撓曲強度則下降16.4%,楊氏模數提升26.9%;動態測試的部分透過實驗得到的共振頻率與有限元素分析的結果比較,其誤差值皆在5%以下,經由阻尼係數的測量,得到石墨/環氧樹脂複合材料之最大的阻尼係數為添加2 wt%的150 μm天然石墨/環氧樹脂複合材料阻尼係數為0.0345,相較於純環氧樹脂的阻尼係數提升了87.5%。本文也探討在官能化石墨表面成功接上COOH鍵,並且找出製造膨脹石墨時依照硫酸與硝酸比例1:1,所得到的膨脹體積最佳;最後以SEM觀察其複合材料斷裂面,了解複合材料受拉伸負載的破壞機制。 


    Epoxy is commonly used in the composite materials, though its mechanical and electric properties is poor. Graphite with high temperature resistance, good mechanical properties, low electrical resistivity, and cheaper than carbon nanotubes, is an excellent reinforcing material when mixed with epoxy. In this study, 150 μm natural graphite, functionalized graphite, and expanded graphite were used to fabricate composites, using epoxy as the matrix material. Different percentages (0, 2, 4, 6, 8 wt%) of natural graphite, functionalized graphite and expanded graphite were added in epoxy-based composites, and their mechanical and dynamic properties were assessed.
    From the results of tensile and bending tests, the addition of 150 μm natural graphite, functionalized graphite, expanded graphite into epoxy can effectively improve the flexural and Young's moduli. The composites with functionalized graphite had best mechanical properties, for the cases studied. For the 8 wt% functionalized graphite/epoxy composites, the Young’s modulus increased 26.9%, the flexural modulus increased 29.9%, and the flexural strength decreased 16.4%. From the dynamic test, the difference in experimental and analytical natural frequencies of the composites tested is less than 5%. For damping measurement, 2 wt% 150 μm natural graphite/epoxy composites showed a higher damping ratio 0.0345, which is 87.5% higher than that of neat epoxy. Finally, the fracture surfaces of tested composites were observed using scanning electronic microscopy (SEM), and the failure mechanism of the composites was discussed.

    目錄 摘要 i Abstract ii 目錄 iii 表目錄 vi 圖目錄 vii 第一章 緒論 1 1.1. 研究動機 2 1.2. 文獻回顧 2 1.2.1. 石墨簡介 2 1.2.2. 官能化石墨簡介 4 1.2.3. 膨脹石墨簡介 5 1.2.4. 環氧樹脂簡介 6 1.3. 研究主題 6 第二章 實驗方法與步驟 8 2.1. 複合材料組成原料 8 2.1.1. 環氧樹脂 8 2.1.2. 天然石墨 8 2.2. 實驗儀器設備 8 2.2.1. 陶瓷加熱攪拌器 9 2.2.2. 超音波震盪機 9 2.2.3. 真空烘箱與真空幫浦 9 2.2.4 熱風循環烤箱 9 2.2.5. 熱壓機 10 2.2.6. 鑽石切割機 10 2.2.7. 微波爐 10 2.2.8. 電子天秤 10 2.2.9. 拉伸試驗機 10 2.2.10. 場發射掃描式電子顯微鏡 11 2.2.11. 振動量測設備 11 2.3. 膨脹石墨 11 2.3.1. 膨脹石墨之製備 11 2.3.2. 膨脹石墨之膨脹體積量測 12 2.4. 官能化石墨 13 2.4.1 官能化石墨之製備: 13 2.4.2. 傅里葉轉換紅外光譜儀: 13 2.5. 試片製作 14 2.5.1前處理之步驟 14 2.5.2熱壓硬化處理 15 2.6. 機械性質量測 16 2.6.1. 拉伸試驗 16 2.6.2. 撓曲試驗 17 2.7. 密度測試 17 2.8. 振動測試 18 2.8.1 共振頻率量測: 18 2.8.2. 材料阻尼係數量測: 18 2.9. 試片微結構觀察 19 第三章 有限單元與數據分析 20 3.1. 有限單元分析 20 3.2. 數據分析 23 3.2.1. 數據平均值與標準差 23 3.2.2. Chauvenet’s準則 23 3.2.3. 最小平方法 24 第四章 結果與討論 26 4.1.官能化石墨與膨脹石墨的製程 26 4.1.1. 官能化石墨 26 4.1.2. 膨脹石墨 27 4.2. 熱壓時間對環氧樹脂撓曲性質影響 28 4.3. 複合材料試片拉伸測試結果 28 4.4. 複合材料試片撓曲測試結果 30 4.5. 複合材料試片密度量測 32 4.6. 石墨/環氧樹脂之共振頻率 34 4.6.1複合材料試片之共振頻率之模擬結果 34 4.6.2複合材料試片之共振頻率之實驗結果 36 4.7. 石墨/環氧樹脂複合材料阻尼係數 37 4.8. 場發射電子顯微鏡之觀察 39 第五章 結論 41 參考文獻 43 圖表 48   表目錄 表4.1 不同硫酸/硝酸混合比例所製成膨脹石墨 48 表4.2 純環氧樹脂在不同熱壓時間下的撓曲模數與強度 48 表4.3 純環氧樹脂加入不同補強材料之複合材料楊氏模數 49 表4.4 純環氧樹脂加入不同補強材料之複合材料之蒲松比 49 表4.5 純環氧樹脂加入不同補強材料之複合材料之撓曲模數 50 表4.6 純環氧樹脂加入不同補強材料之複合材料之撓曲強度 50 表4.7 純環氧樹脂加入不同補強材料之複合材料密度量測結果 51 表4.8 天然石墨/環氧樹脂共振頻率模擬結果 51 表4.9 官能化石墨/環氧樹脂共振頻率模擬結果 52 表4.10 膨脹石墨/環氧樹脂共振頻率模擬結果 52 表4.11 石墨/環氧樹脂複合材料共振頻率模擬及實驗誤差 53 表4.12 官能化石墨/環氧樹脂複合材料共振頻率模擬及實驗誤差 54 表4.13 膨脹石墨/環氧樹脂複合材料共振頻率模擬及實驗誤差 54 表4.14 純環氧樹脂加入不同補強材料之複合材料阻尼係數 55   圖目錄 圖2.1 天然石墨 56 圖2.2 環氧樹脂/硬化劑 56 圖2.3陶瓷加熱攪拌器 57 圖2.4超音波震盪機 57 圖2.5 真空烘箱 58 圖2.6 真空幫浦 58 圖2.7 熱風循環烤箱 59 圖2.8 熱壓機 59 圖2.9鑽石切割機 60 圖2.10 微波爐 60 圖2.11 電子天秤 61 圖2.12 拉伸試驗機 61 圖2.13 場發射掃描式電子顯微鏡 62 圖2.14 固定基座 62 圖2.15 衝擊錘 63 圖2.16 振動量測儀 63 圖2.17 示波器 64 圖2.18 加速度規 64 圖2.19 傅里葉轉換紅外光譜儀 65 圖2.20 複合材料試片製作流程 66 圖2.21 拉伸試驗與振動試驗之模具 67 圖2.22 撓曲試驗之模具 67 圖2.23 熱壓成型示意圖 68 圖2.24 純環氧樹脂與NG/Epoxy複合材料拉伸測試試片 68 圖2.25 拉伸試驗架構圖 69 圖2.26 純環氧樹脂與NG/Epoxy複合材料撓曲測試試片 69 圖2.27 撓曲試驗架構圖 70 圖2.28 振動實驗設備架構圖 70 圖2.29 加速度規擺置圖 71 圖2.30 典型黏滯阻尼之對數衰減示意圖 71 圖3.1 Solid 45 單元示意圖 72 圖3.2 複合材料之模型邊界條件設定 72 圖4.1 溴化鉀FTIR圖 73 圖4.2 150 μm天然石墨/溴化鉀FTIR圖 73 圖4.3 官能化石墨/溴化鉀FTIR圖 74 圖4.4 膨脹石墨依照不同製程所得膨脹體積趨勢圖 74 圖4.5 NG/Epoxy、f-NG/Epoxy、EG/Epoxy複合材料之楊氏模數 75 圖4.6 NG/Epoxy、f-NG/Epoxy、EG/Epoxy複合材料蒲松比 75 圖4.7 複合材料試片之撓曲硬力-撓曲應變圖 76 圖4.8 NG/Epoxy、f-NG/Epoxy、EG/Epoxy複合材料撓曲模數 77 圖4.9 NG/Epoxy、f-NG/Epoxy、EG/Epoxy複合材料撓曲強度 77 圖4.10 NG/Epoxy、f-NG/Epoxy、EG/Epoxy複合材料密度量測數據 78 圖4.11 NG/Epoxy、f-NG/Epoxy、EG/Epoxy複合材料之模擬結果 78 圖4.12 NG/Epoxy、f-NG/Epoxy、EG/Epoxy複合材料之實驗數據 79 圖4.13 2wt%NG/環氧樹脂複合材料試片之振動模態 80 圖4.14複合材料之位移響應圖 81 圖4.15 NG/Epoxy、f-NG/Epoxy、EG/Epoxy複合材料之阻尼係數 82 圖4.16 150 μm天然石墨片1000倍FESEM圖 82 圖4.17 硫酸:硝酸為4:1製備的膨脹石墨FESEM圖 83 圖4.18 硫酸:硝酸為1:1所製備的膨脹石墨FESEM圖 84 圖4.19 硫酸:硝酸為1:4所製備的膨脹石墨FESEM圖 85 圖4.20 純環氧樹脂斷裂面1000倍FESEM圖 86 圖4.21 2 wt%天然石墨/環氧樹脂複合材料斷裂面200倍FESEM圖 86 圖4.22 4 wt%天然石墨/環氧樹脂複合材料斷裂面200倍FESEM圖 87 圖4.23 6 wt%天然石墨/環氧樹脂複合材料斷裂面200倍FESEM圖 87 圖4.24 8 wt%天然石墨/環氧樹脂複合材料斷裂面FESEM圖 88 圖4.25 8 wt%官能化石墨/環氧樹脂複合材料斷裂面FESEM圖 89 圖4.26 6 wt%膨脹石墨/環氧樹脂複合材料斷裂面FESEM圖 90

    [1] R. F. Gibson, Principles of composite material mechanics, McGraw-Hill, New York, 1994.
    [2] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly and R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science, Vol. 287, pp. 637-640, 2000.
    [3] B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, and R.O. Ritchie, “Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes,” Materials Science and Engineering A, Vol. 334, pp. 173-178, 2002.
    [4] C. F. Cornwell and L. T. Wille, “Elastic properties of single-walled carbon nanotubes in compression,” Solid State Communications, Vol. 96, pp. 555-558, 1997.
    [5] E. T. Thostenson, Z. Ren, T. W. Chou, “Advances in the science and technology of carbon nanotubes and their composites: a review,” Composites Science and Technology, Vol 61, pp. 1899-1912, 2001.
    [6] K. T. Lau and D. Hui, “The revolutionary creation of new advanced materials carbon nanotube composites,” Composites Part B: Engineering, Vol. 33, pp. 263-277, 2002.
    [7] S. Xie, W. Li, Z. Pan, B. Chang, and L. Sun, “Mechanical and physical properties on carbon nanotube,” Journal of Physics and Chemistry of Solids, Vol. 61, pp. 1153-1158, 2000.
    [8] 袁澄波編,石墨材料之開發利用,復漢出版社有限公司,台南,1-1~31 999
    [9] S. H. Ko, W. Lee, J. M. Jang, I. H. Kim and S. G. Shin, “Graphite reinforced Fe–Al–X composites for slide bearing applications,” Surface Review and Letters, Vol. 17, 2010.
    [10] P. V. Muterlle, I. Cristofolini, M. Pilla, W. Pahl, A. Molinari, “Surface durability and design criteria for graphite–bronze sintered composites in dry sliding applications,” Materials & Design, Vol. 32, pp. 3756-3764, 2011.
    [11] Y. W. Wu, K. Wu, K. K. Deng, K. B. Nie, X. J. Wang, M. Y. Zheng, X. S. Hu, “Damping capacities and microstructures of magnesium matrix composites reinforced by graphite particles,” Materials & Design, Vol. 31, pp. 4862-4865, 2010.
    [12] Q. Wang, F. Han, C. Cui, “Effects of macroscopic graphite particulates on the damping behavior of CuAlMn shape memory alloy,” Journal of Materials Science, Vol. 42, pp. 5029-5035, 2007.

    [13] J.N. Wei, H.F. Cheng, Y.F. Zhang, F.S. Han , Z.C. Zhou, J.P. Shui, “Effects of macroscopic graphite particulates on the damping behavior of commercially pure aluminum,” Materials Science and Engineering A325, pp. 444–453, 2002.
    [14] A. Yasmin, I. M. Daniel, “Mechanical and thermal properties of graphite platelet/epoxy composites,” Polymer 45 ,pp. 8211–8219, 2004.
    [15] M. Li, Y. G. Jeong, “Poly(ethylene terephthalate)/exfoliated graphite nanocomposites with improved thermal stability, mechanical and electrical properties,” Composites: Part A 42, pp. 560-566, 2011.
    [16] Y. Zhao, M. Xiao, S. Wang, X. Ge, Y. Meng, “Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites,” Composites Science and Technology 67(11-12), pp. 2528-2534, 2007.
    [17] M. Bonnissel, L. Luo, D. Tondeur., “Compacted exfoliated natural graphite as heat conduction medium,” Carbon, 39(14), pp. 2151-2161, 2001.
    [18] J. H. Park, J. M. Ko, O. O. Park, D. W. Kim, “Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber,” Journal of Power Sources, Vol. 105, pp. 20-25, 2002.
    [19] H. C. Kuan, C. C. Ma, K. H. Chen, S. M. Chen, “Preparation, electrical, mechanical and thermal properties of composite bipolar plate for a fuel cell,” Journal of Power Sources, Vol. 134, pp. 7-17 ,2004.
    [20] S. R. Dhakate, R. B. Mathur, B. K. Kakati, T.L. Dhami, “Properties of graphite-composite bipolar plate prepared by compression molding technique for PEM fuel cell,” International Journal of Hydrogen Energy, Vol. 32, pp. 4537-4543,2007.
    [21] Y. Zhan, Y. Lei, F. Meng, J. Zhong, R. Zhoa, X. Liu, “Electrical, thermal, and mechanical properties of polyarylene ether nitriles/graphite nanosheets nanocomposites prepared by masterbatchroute,” Journal of Materials Science 46, pp. 824-831, 2011.
    [22] H. Chen, H. B. Liu, L. Yang, J. X. Li, L. Yang, “Study on the preparation and properties of novolac epoxy/graphite composite bipolar plate for PEMFC,” International Journal of Hydrogen Energy, Vol. 35, pp. 3105- 3109, 2010.
    [23] X. Huang, J. W. Gillespie, R. F. Eduljee, “Effect of temperature on the transverse cracking behavior of cross-ply composite laminates,” Composites Part B: Engineering, Vol. 28, pp. 419-424, 1997.
    [24] I. Tantis, G. C. Psarras, D. Tasis, “Functionalized graphene – poly(vinyl alcohol) nanocomposites: Physical and dielectric properties,” Polymer Letters, Vol.6, pp. 283–292, 2012.
    [25] S. Ganguli, A. K. Roy, D. P. Anderson, “Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites,” Carbon 46, pp. 806–817, 2008.

    [26] J. Bian, X. W. Wei, S. J. Gong, H. Zhang, Z. P. Guan, “Improving the thermal and mechanical properties of poly(propylene carbonate) by incorporating functionalized graphite oxide,” Journal of Applied Polymer Science, Vol. 123, pp. 2743–2752, 2012
    [27] A. B. Sulong, N. Muhamad, J. Sahari, R. Ramli,B. M. Deros and J. Park “Electrical conductivity behaviour of chemical functionalized MWCNTs epoxy nanocomposites,” European Journal of Scientific Research, Vol.29 No.1, pp.13-21, 2009
    [28] Z. Shengtao, G. Anyan, G. Huanfang, C. Xiangqian, “Characterization of exfoliated graphite prepared with the method of secondary intervening,” International Journal of Industrial Chemistry, Vol. 2, No. 2, pp. 123-130, 2011.
    [29] J. H. Li, H. F. Da, Q. Liu, S. F. Liu, “Preparation of sulfur-free expanded graphite with 320 μm mesh of flake graphite,” Materials Letters, Vol. 60, pp. 3927-3930, 2006.
    [30] J. H. Li , L. L. Feng, Z. X. Jia, “Preparation of expanded graphite with 160 μm mesh of fine flake graphite,” Materials Letters, Vol.60, pp.746-749, 2006.
    [31] 柏麗梅,劉柏英, “膨脹石墨的飽和吸附量與微觀結構的關係,” 哈爾濱理工大學學報, 第14卷, 第三期, 2009
    [32] S. Konwer, J. P. Gogoi, A. Kalita, S. K. Dolui, “Synthesis of expanded graphite filled polyaniline composites and evaluation of their electrical and electrochemical properties,” Journal of Materials Science: Materials in Electronics, Vol. 22, pp.1154-1161, 2011.
    [33] X. G. Zhang, L. L. Ge, W. Q. Zhang, J. H. Tang, L. Ye, Z. M. Li, “Expandable graphite-methyl methacrylate-acrylic acid copolymer composite particles as a flame retardant of rigid polyurethane foam,” Journal of Applied Polymer Science, Vol. 122, pp. 932-941, 2011.
    [34] X. Chen, L. Li, S. Jin, B. Zhang, H. Qian, G. Tong, “Expanded graphite/ polyaniline electrical conducting composites: Synthesis, conductive and dielectric properties,” Materials Letters, Vol. 64, pp. 1313-1315, 2010.
    [35] S. G. Miller, J. L. Bauer, M. J. Maryanski, P. J. Heimann, J. P. Barlow, J. M. Gosau, R. E. Allred, “Characterization of epoxy functionalized graphite nanoparticles and the physical properties of epoxy matrix nanocompositesm,” Composites Science and Technology 70, pp.1120-1125, 2010.
    [36] Xian Jiang, Lawrence T. Drzal, “Improving electrical conductivity and mechanical properties of high density polyethylene through incorporation of paraffin wax coated exfoliated graphene nanoplatelets and multi-wall carbon nano-tubes,” Composites: Part A 42, pp.1840-1849, 2011.
    [37] C. A. May, Y. Tanaka , Epoxy Resins: Chemistry and Technology, Marcel Dekker Inc, New York, 1973.
    [38] 馬振基,高分子複合材料(上冊),正中書局,新北市,1995。

    [39] 劉鑒蔚,無機填充物與固態膠粒對環氧樹脂韌性之影響,國立中央大學化學工程研究所碩士論文,桃園,1996。
    [40] 凌國銓,奈米碳管/環氧樹脂複合材料之電磁屏蔽與機電性質研究,國立清華大學動力機械工程學系碩士論文,新竹,2007。
    [41] V. Tanrattanakul, K. SaeTiaw, “Comparison of microwave and thermal cure of epoxy–anhydride resins: mechanical properties and dynamic characteristics,” Journal of Applied Polymer Science, Vol. 97, pp.1442-1461, 2005.
    [42] 沈文馨,微波處理對多比奈米碳管/環氧樹脂複合材料機械性質之影響,國立清華大學動力機械工程學系碩士論文,新竹,2008。
    [43] 鄒慶福,預扭及溫度效應對擬均向性CFRP複合材料疲勞行為之影響,國立清華大學動力機械工程學系碩士論文,新竹,1998。
    [44] Y. Miyano, M. Nakada , M. K. McMurry, “Influence of stress ratio on fatigue behavior in the transverse direction of unidirectional CFRPS,” Journal of composite materials, Vol. 29, pp. 1808-1822, 1995.
    [45] C. E. Browning, C. E. Husman and J. M. Whitney, “Moisture effects in epoxy matrix composites,” Composite materials: testing and design, 1987.
    [46] R. T. Potter, D. Purslow, “The environmental degradation of notched CFRP in compression,” Composites, Vol. 14, pp. 206-225, 1983.
    [47] A. J. Barker, V. Balasundaram, “Compression testing of carbon fibre-reinforced plastics exposed to humid environments,” Composites, Vol.18, pp. 217-226. 1987.
    [48] D. D. Nguyen, N. H. Tai, Y. L. Chueh, S. Y. Chen, Y. J. Chen, W. S. Kuo, T. W. Chou, C. S. Hsu, and L. J. Chen, “Synthesis of ethanol-soluble few-layer graphene nanosheets for flexible and transparent conducting composite films,” Nanotechnology, Vol. 22 , pp. 1-8, 2011.
    [49] GB10698-89,可膨脹石墨標準檢驗,中國建設材料工業局,1989。
    [50] V. A. Chhabra, A. Deep, R. Kaur, R. Kumar, “ Functionalization of graphene using carboxylation process,” International Journal for Science and Emerging Technologies with Latest Trends, pp. 13-19, 2012.
    [51] ASTM D638-10, “Standard test method for tensile properties of plastics,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
    [52] ASTM D790-10, “Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
    [53] ASTM D792-08, “Standard test methods for density and specific gravity (relative density) of plastics by displacement,” Annual Book of ASTM Standards, Vol. 8.1, 2008.
    [54] ASTM E756-05, ”Standard test method for measuring vibration-damping properties of materials,” Annual Book of ASTM Standards, Vol. 4.06, 2010.
    [55] S. S. Rao, Mechanical vibrations fourth edition, Prentice hall, 2005.
    [56] 行政院國家科學委員會精密儀器發展中心出版,儀器總覽,台北,1998。
    [57] ANSYS Release 12.1, ANSYS, Inc., PA, 2010.
    [58] J. W. Dally and W. F. Riley, Experimental Stress Analysis, McGraw-Hill, New York, 1991.
    [59] 蔡尚南, “含脫膠區奈米複材三明治結構之振動行為研究,” 國立清華大學動力機械工程學系碩士論文, 2012.
    [60] 江柏賢, “石墨/環氧樹脂複合材料之機電性質研究,” 國立清華大學動力機械工程學系碩士論文, 2012.
    [61] 陳韋任, “燃料電池用導電雙極板之奈米複合材料製備及其協成性質研究,” 國立清華大學動力機械工程學系博士論文, 2010.
    [62] B. T. Draine, H. M. Lee, “Optical properties of interstellar graphite and silicate grains,” Astrophysical Journal, Vol. 285, p. 89-108, 1984.
    [63] X. Zhou, Eungsoo Shin, K.W. Wang, C.E. Bakis, “Interfacial damping characteristics of carbon nanotube-based composites,” Composites Science and Technology, Vol. 64, pp. 2425–2437, 2004.
    [64] H. Rajoria, N. Jalili, “Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites,” Composites Science and Technology, Vol. 65, pp. 2079–2093, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE