簡易檢索 / 詳目顯示

研究生: 陳柏源
Chen, Po-Yuan
論文名稱: 適用於低功耗虛擬靜態隨機存取記憶體的增強型錯誤更正碼方法與適用於三維整合晶片的堆疊前穿矽孔測試技術
An Enhanced ECC Methodology for Low Power Pseudo-SRAM and On-Chip Pre-bond TSV Test Schemes for 3D ICs
指導教授: 吳誠文
Wu, Cheng-Wen
口試委員: 張慶元
Chang, Tsin-Yuan
李昆忠
Lee, Kuen-Jong
李鎮宜
Lee, Chen-Yi
劉靖家
Liou, Jing-Jia
謝東佑
Hsieh, Tong-Yu
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 114
中文關鍵詞: 錯誤更正碼隨機存取記憶體測試三維積體電路穿矽孔
外文關鍵詞: Error correction codes, Random access memory, Testing, Three-dimensional integration circuit, Through-silicon via
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了提高記憶體的可靠度或良率,容錯(fault tolerance)技術時常被用來修復記憶體上發生的永久性或暫時性錯誤。在記憶體的儲存與讀寫動作中,錯誤更正碼(error correction code)藉由儲存在記憶體內額外的檢查碼和編解碼技術,即時地更正與偵查讀取資料內的錯誤;可提昇記憶體使用期間的可靠度與出廠時的良率。另一方面,在虛擬靜態記憶體(PSRAM)內常常藉由延長再新(refresh)週期來達到減低功耗的目的,但是,此舉將使得體質不良的記憶體單元發生資料錯誤。本論文中,我們提出一種新型的錯誤更正碼架構,以長編碼(long codewords)減少檢查碼的成本,來修復並保護延長再新(refresh)週期的虛擬靜態記憶體內的資料,並同時解決錯誤掩蓋(error masking)的問題。針對新型架構中的檢查碼核對矩陣(parity check matrix),我們也提出系統化的產生方法。實驗結果顯示,針對擁有16位元輸出入的256MB PSRAM,我們使用的(72,64)長編碼僅僅增加了0.2%的電路面積與3.5奈米秒的時間延遲,卻比傳統(22,16)編碼方法減少了3倍的檢查碼使用量,也有效的消除了錯誤掩蓋的問題。
    另一方面,三維整合積體電路(3D IC)中,穿矽孔(TSV)提供了大量且低負載的連線方式,可以降低功耗並提升速度與信號頻寬。如何有效的提升三維整合積體電路的良率是當務之急。在晶圓磨薄前(pre-thin)的穿矽孔結構類似於動態記憶體(DRAM)的記憶單元,本論文中,我們提出三種在晶圓磨薄與堆疊前的穿矽孔測試技術。針對盲洞(blind)穿矽孔製程,借鏡動態記憶體內的感測放大(sense amplification)技術,我們提出了充放電法(charge-discharge test)與電荷分配法(charge-sharing test);針對透孔(open-sleeve)穿矽孔,我們提出了分電壓法(voltage- dividing)法。我們提出的測試技術可以在晶圓測試階段(wafer-level testing),檢查出晶片上的瑕疵穿矽孔並丟棄該晶片,以節省堆疊不良晶片所導致的後續製造與測試的成本損失。藉由穿矽孔電氣模型,實驗模擬結果顯示,針對直徑5um、深度50um、60fF的盲洞穿矽孔,電容值變動範圍在正負10%以上的有瑕疵穿矽孔可以被充放電法有效的篩選出來。而製程變動(process variation)的蒙地卡羅實驗顯示,針對4010fF的盲洞穿矽孔,在電荷分配法中,一個測試模組可以被100個穿矽孔共用,且誤判率(overkill rate)小於6%。針對170毫歐姆的透孔穿矽孔,分電壓法可以有效測試出高阻值的斷裂等瑕疵。


    Error control codes or error correction codes (ECC) have been widely used to maintain the reliability of memories, but ordinary ECC codes are not suitable for memories with long codewords. For portable products, power reduction in memories with DRAM-like cells can be done by reducing the refresh frequency, but the loss of data integrity should be taken care of seriously. To solve these issues, in this thesis, we present a parallel encoding and decoding ECC scheme to reduce refresh power for an industrial pseudo SRAM (PSRAM) with long codewords. We also propose a systematic way to generate the parity check matrix and the parity correction mechanism to reduce the operating power for the proposed scheme. As for the 70ns access time of the 256MB PSRAM with the (72,64) code and 16-bit I/O, experimental results show that the new ECC scheme can be integrated with the READ/WRITE operations with about 0.2% circuit area overhead and less than 3.5ns encoding/decoding time. The parity overhead of the new ECC scheme is 12.5% instead of 37.5% as in the conventional scheme with the (22, 16) code The proposed architecture provides a flexible solution for memories with different widths of ECC codewords and I/O ports, without the error masking effect or reduction in reliability.
    To provide a small form factor, reduce power consumption, increase performance and memory density, three dimensional integration circuits (3D IC) seem an inevitable solution for these requirements. For the challenges of 3D IC, yield improvement is the most critical and emergency issue. Most works in 3D IC testing focus on the post-bond interconnection test. However, pre-bond test is preferred for the 3D IC, since it reduces stacking yield loss and thus saves the following cost. In this thesis, we introduce three pre-bond TSV low-frequency test schemes for blind-hole TSVs and open-sleeve TSVs by performing on-chip screening before wafer thinning and bonding. The first two schemes are for blind-hole TSVs, which have one end floating, using the charge-discharge and charge-sharing techniques, respectively, while the later is commonly seen in DRAM. The third scheme is for open-sleeve TSVs, which have one end shorted to the substrate, using a voltage-dividing technique commonly seen in ROM. By virtue of the inherent capacitive and resistive characteristics, we detect the TSVs out of a specified range as anomalies, taking into account the effects of process variations in the detection circuitry. The statistical design by Monte Carlo simulation using TSMC 65nm low-power process shows that for blind-hole TSVs, the best overkill ratio can be below 6%, but for open-sleeve TSVs, the inherent limitations restrict the applicability and the results vary. Our implementation enjoys little area overhead, requiring only a simple sense amplifier and a write buffer that are shared among a number of TSVs. Reducing the number of TSVs that share a test module will reduce the test time, but increase the area overhead. For blind-hole TSVs, the parallelism also affects the overkill and escape rates.

    Chapter 1 Introduction ............................................ 1 1.1 Motivation..................................................... 1 1.2 Error Detection and Correction Schemes in Memories ............ 2 1.3 The Enhanced ECC Methodology for Low Power Pseudo-SRAMs ....... 3 1.4 Three Dimensional Integrated Circuits (3D ICs)................. 5 1.5 The Proposed Schemes for Pre-bond TSV Test .................... 6 1.6 Thesis Organization ........................................... 6 Chapter 2 Error Control Codes in Memories ......................... 8 2.1 Error ControlCodes............................................. 8 2.2 Hsiao Codes ................................................... 9 2.3 Long Codewords................................................ 11 2.4 Error Masking Effect ......................................... 12 Chapter 3 Three Dimensional Integrated Circuits (3D IC) .......... 14 3.1 Introduction for the 3D IC ................................... 14 3.2 Interposer-Based 3D ICs (2.5D ICs) ........................... 15 3.3 Test Flow for 3D and 2.5D ICs ................................ 16 3.4 Test Schemes for Interconnects in 3D/2.5D ICs ................ 17 Chapter 4 Through-Silicon Via (TSV) .............................. 20 4.1 Classification by Manufacturing Flow ......................... 20 4.2 DC Electrical Equivalent Circuit ............................. 21 4.3 Defects in a TSV ............................................. 23 4.4 TSV FaultModels .............................................. 26 4.5 Pre-bond TSV Test Schemes .................................... 27 Chapter 5 The Enhanced ECC Methodology for Low Power Pseudo-SRAMs .30 5.1 ECC Architecture and Hardware Design ......................... 30 5.1.1 Architecture of a Pseudo SRAM with the proposed ECC Design . 30 5.1.2 Functionality of Each Block ................................ 32 5.1.3 READ and WRITE operations .................................. 34 5.1.4 Parity Distance Generation ................................. 35 5.1.5 Parity Correction Mechanism ................................ 36 5.2 Systematic H-Matrix Generation Scheme ........................ 39 5.2.1 Theorems and Observation ................................... 39 5.2.2 Construction Procedure for the H-matrix..................... 45 5.2.3 Single Indicator-Bit Pattern (SIBP) ........................ 47 5.2.4 Complementary Indicator-Bit Pattern (CIBP) ................. 49 5.2.5 Row Weight Adjustment ...................................... 51 Chapter 6 Proposed On-Chip Pre-bond TSV Test Schemes ............. 53 6.1 DFT Architecture ............................................. 53 6.2 Schematic for the pre-bond TSV Test Circuit .................. 54 6.3 Charge-Discharge Test (CDT) for Blind-Hole TSVs .............. 56 6.4 Charge-Sharing Test (CST) for Blind-Hole TSVs ................ 59 6.5 Voltage-Dividing Test (VDT) for Open-sleeve TSVs.............. 62 6.6 CST Response of Blind-Hole TSVs with Different Faults ........ 64 6.7 Fault Coverage Analysis ...................................... 69 Chapter 7 Experimental Results of the Enhanced ECC Methodology for Low Power Pseudo-SRAMs ................................. 71 7.1 Hamming Weight and Row Weight Analysis ....................... 71 7.2 Area Overhead and Timing Penalty Evaluation .................. 72 7.3 Reliability Analysis and Stress Tests ........................ 75 7.4 Power Consumption Evaluation ................................. 78 Chapter 8 Experimental Results of On-Chip Pre-bond TSV Test Schemes ................................................ 83 8.1 Charge-Discharge Test for Blind-Hole TSVs..................... 83 8.2 Charge-Sharing Test for Blind-Hole TSVs ...................... 87 8.3 Voltage-Dividing Test for Open-Sleeve TSVs ................... 90 8.4 Process Variation and Monte Carlo Simulations ................ 91 8.5 Test Resolution and Test Group Size in CST ................... 94 8.6 Test Resolution in VDT ....................................... 98 8.7 Comprehensive Comparisons .................................... 99 Chapter 9 Conclusions and Future Work ........................... 102 9.1 Conclusions ................................................. 102 9.1.1 The Enhanced ECC Methodology for Low Power Pseudo-SRAMs ... 102 9.1.2 On-Chip Pre-bond TSV Test Schemes ......................... 103 9.2 Future Work ................................................. 104 9.2.1 Error Control Codes in Memory Cube ........................ 104 9.2.2 DFY Architecture for Pre-bond and Post-bond Interconnection Test in 3D/2.5D IC ........................................ 104 9.2.3 Cost Analysis of Different Yield Improvement Strategies for 3D IC...................................................... 105 Bibliography .................................................... 106

    [1] M. Asakura, “An experimental 1-Mbit cache DRAM with ECC,” in IEEE Journal of
    Solid-State Circuits, vol. 25, no. 1, pp. 5–10, 1990.
    [2] M. Y. Hsiao, “A class of optimal minimum odd-weight-column SEC-DED codes,” in
    IBM J. Research and Development, vol. 14, pp. 395–401, July 1970.
    [3] R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error-correcting binary group
    codes,” in Information and Control, vol. 3, pp. 68–79, Mar. 1960.
    [4] A. Hocquenghem, “Codes correcteurs d'erreurs,” Chiffres (Paris), vol. 2, pp. 147–156,
    Sept. 1959.
    [5] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” in Soc. Indust.
    Appl. Math., vol. 8, pp. 300–304, 1960.
    [6] F.Z. Koksal and M.D. Yucel, “Comments on the decoding algorithms of DBEC-TBED
    Reed-Solomon codes,” in Proc. IEEE Trans. on Comput., vol. 41, pp. 244–247,
    Feb.1992.
    [7] S. J. Hong and A. M. Patel, “A general class of maximal codes for computer
    applications,” in Proc. IEEE Trans. on Comput., vol. C-21, pp. 1322–1331, Dec. 1972.
    [8] D. C. Bossen, L. C. Chang, and Chin-Long Chen, “Measurement and generation of error
    correcting codes for package failures,” in Proc. IEEE Trans. on Comput., vol. C-27, pp.
    201–204, March 1978.
    [9] H. Kaneko and E. Fujiwara, “A class of M-ary asymmetric symbol error correcting
    codes for data entry devices,” in Proc. IEEE Trans. on Comput., vol. 53, pp. 159–167,
    Feb. 2004.
    [10] Y. Katayama, E. J. Stuckey, S. Morioka, and Z. Wu, “Fault-tolerant refresh power
    reduction of DRAMs for quasi-nonvolatile data retention,” in Proc. IEEE Int'l Symp. on
    Defect and Fault Tolerance in VLSI Systems (DFTVS) , Nov. 1999, pp. 311–318.
    [11] Y. Katayama, Y. Negishi, and S. Morioka, “Efficient error correction code
    configurations for quasi-nonvolatile data retention by DRAMs,” in Proc. IEEE Int'l
    Symp. on Defect and Fault Tolerance in VLSI Systems (DFTVS) , 2000, pp.201–209.
    [12] P.-Y. Chen, Y.-T. Yeh, C.-H. Chen, J.-C. Yeh, C.-W. Wu, J.-S. Lee, and Y.-C. Lin, “An
    Enhanced EDAC Methodology for Low Power PSRAM,” in Proc. IEEE Int’l Test Conf.
    (ITC), Oct. 2006, pp. 1–10.
    [13] J.-F. Li and Y.-J. Huang, “An error detection and correction scheme for RAMs with
    partial-write function,” in Proc. IEEE Int'l Workshop on Memory Technology, Design
    and Testing (MTDT), Aug. 2005, pp. 115–120.
    [14] S.-S. Pyo, C.-H. Lee, G.-H. Kim, K.-M. Choi, Y.-H. Jun, and B.-S. Kong, “45nm
    low-power embedded pseudo-SRAM with ECC-based auto-adjusted self-refresh
    scheme,” in Proc. IEEE Int’l Symp. on Circuits and Systems (ISCAS), May 2009, pp.
    2517–2520.
    [15] S. Lin and Daniel J. Costello, Error Control Coding: Fundamentals and Applications,
    Prentice Hall, Inc., Englewood Cliffs, pp. 3–5 & pp. 66–89, 1983. (Book style)
    [16] K. Amir and B. Eric, “Fast, minimal decoding complexity, system level, binary
    systematic (41, 32) single-error-correcting codes for on-chip DRAM applications,” in
    Proc. IEEE Int'l Symp. on Defect and Fault Tolerance in VLSI Systems (DFTVS), 2001,
    pp. 308–313.
    [17] S. Ghosh, S. Basu, and N. A. Touba, “Reducing power consumption in memory ECC
    checkers,” in Proc. IEEE Int'l Test Conf. (ITC), Oct. 2004, pp. 1322–1331.
    [18] A. Johnston, “Scaling and technology issues for soft error rates,” in Proc. 4th Ann.
    Research Conf. on Reliability, Stanford Univ., Oct. 2000.
    [19] M.-C. Cheng, J.-P. Lin, C.-S. Lai, R.-D. Chang, S.-N. Shih, M.-Y. Wang, and P.-I. Lee,
    “Si-H bond breaking induced retention degradation during packaging process of
    256-Mbit DRAM with negative wordline bias,” in Proc. IEEE Trans. on Electron
    Devices, vol. 52, pp. 484–491, April 2005.
    [20] Rambus DRAM model website:
    http://www.rambus.com/us/downloads/document_abstracts/products/dram_power_model
    _disclaimer.html
    [21] P.-Y. Chen, C.-L. Su, C.-H. Chen, and C.-W. Wu, “Generalization of an Enhanced ECC
    Methodology for Low Power PSRAM,” have been accepted by the IEEE Trans. on
    Computers, 2012.
    [22] T.K. Moon, Error Correction Coding Mathematical Methods and Algorithms, John
    Wiley & Sons, Inc., Hoboken, pp. 83–98, 2005. (Book style)
    [23] K. Bernstein, P. Andry, J. Cann, P. Emma, D. Greenberg, W. Haensch, M. Ignatowski,
    S. Koester, J. Magerlein, R. Puri, and A. Young, “Interconnects in the third dimension:
    design challenges for 3D ICs,” in Proc. Design Automation Conf., June 2007, pp.
    562–567.
    [24] W. Rhett Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A.-M. Sule, M. Steer, and
    P.-D. Franzon,” Demystifying 3D ICs: the pros and cons of going vertical,” in Proc.
    IEEE Design & Test of Computers, vol. 22, pp. 498–510, Nov. 2005.
    [25] P.-D. Franzon, W.-R. Davis, M.-B. Steer, H. Hao, S. Lipa, S. Luniya, C. Mineo, J. Oh,
    A. Sule, and T. Thorolfsson, “Design for 3D integration and applications,” in Proc.
    IEEE Int'l Symp. Signals, Systems and Electronics, July 2007, pp. 263–266.
    [26] R.-S. Patti, “Three-dimensional integrated circuits and the future of system-on-chip
    designs,” in Proc. IEEE, vol. 94, No. 6, pp. 1214–1224, June 2006.
    [27] G.-H. Loh, Y. Xie, and B. Black, “Processor design in 3D die-stacking technologies,” in
    Proc. IEEE Computer, vol. 27, no. 5, pp. 31–48, May 2007.
    [28] C.-C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari, “Bridging the processor-memory
    performance gap with 3D IC technology,” in Proc. IEEE Design & Test of Computers,
    vol. 22, pp. 556–564, Nov. –Dec. 2005.
    [29] K.-T. Park, D. Kim, S. Hwang, M. Kang, H. Cho, Y. Jeong, Y. Seo, J. Jang, H.-S. Kim,
    S.-M. Jung, Y.-T. Lee, C. Kim, and W.-S. Lee, “A 45nm 4Gb 3-dimensional
    double-stacked multi-level NAND flash memory with shared bitline structure,” in Dig.
    Tech. Papers Int. Solid-State Circuits Conf. (ISSCC), Feb. 2008, pp. 510–632.
    [30] P. Batude, M.-A. Jaud, O. Thomas, L. Clavelier, A. Pouydebasque, M. Vinet, S.
    Deleonibus, and A. Amara, “3D CMOS integration: introduction of dynamic coupling
    and application to compact and robust 4T SRAM,” in Proc. Int. Conf. Integrated Circuit
    Design Tech., June 2008, pp. 281–284.
    [31] U. Kang, H.-J. Chung, S. Heo, S.-H. Ahn, H. Lee, S.-H. Cha, J. Ahn, D. Kwon, J.-H.
    Kim, J.-W. Lee, H.-S. Joo, W.-S. Kim, H.-K. Kim, E.-M. Lee, S.-R. Kim, K.-H. Ma,
    D.-H. Jang, N.-S. Kim, M.-S. Choi, S.-J. Oh, J-B. Lee, T.-K. Jung, J.-H. Yoo, and C.
    Kim, “8Gb 3D DDR3 DRAM using through- silicon-via technology,” in Dig. Tech.
    Papers IEEE Int. Solid-State Circuits Conf.(ISSCC), Feb. 2009, pp. 130–131.
    [32] P. Ramm and A. Klumpp, “Through-silicon via technologies for extreme miniaturized
    3D integrated wireless sensor systems (e-CUBES),” in Proc. Int. Interconnect Tech.
    Conf.(IITC), June 2008, pp. 7–9.
    [33] B. Kim, C. Sharbono, T. Ritzdorf, and D. Schmauch, “Factors affecting copper filling
    process within high aspect ratio deep vias for 3D chip stacking,” in Proc. Electronic
    Components Tech. Conf.(ECTC), May–June 2006.
    [34] P. Benkart, “3D chip stack technology using through-chip interconnects,” in IEEE
    Design & Test of Computers, vol. 22, pp. 512–518, Nov. 2005.
    [35] M. Motoyoshi, “Through-silicon via (TSV),” in Proc. IEEE, vol. 97, no. 1, pp. 43–48,
    Jan. 2009.
    [36] G. Campardo, G. Ripamonti, and R. Micheloni, “Scanning the issue: 3-D integration
    technologies,” in Proc. IEEE, vol. 97, no. 1, pp. 5–8, Jan. 2009.
    [37] M. Puech, JM. Thevenoud, JM. Gruffat, N. Launay, N. Arnal, and P. Godinat,
    “Fabrication of 3D packaging TSV using DRIE,” in Proc. Design, Test, Integration and
    Packaging of MEMS/MOEMS Symp., Apr. 2008, pp. 109–114.
    [38] X. Dong and Y. Xie, “System-level cost analysis and design exploration for
    three-dimensional integrated circuits (3D ICs),” in Proc. IEEE Asia and South Pacific
    Design Automation Conf., Jan. 2009, pp. 234–241.
    [39] A. Rahman, S. Jose, S.-M. Trimberger, B.-J. New, and C. Valley, “Integrated circuit
    with through-die via interface for die stacking,” US Patent No. 7518398, Apr. 2009.
    [40] I. Loi, S. Mitra, T.-H. Lee, S. Fujita, and L. Benini, "A low-overhead fault tolerance
    scheme for TSV-based 3D network on chip links," in Proc. IEEE/ACM Int. Conf.
    Computer-Aided Design, Nov. 2008, pp. 598–602.
    [41] C.-Y. Lo, Y.-T. Hsing, L.-M. Denq, C.-W. Wu, "SOC Test Architecture and Method for
    3-D ICs," in Proc. IEEE Trans. on Comp.-Aided Design of Int. Circuits and Systems,
    vol.29, no.10, pp.1645–1649, Oct. 2010.
    [42] T.-Y. Kuo, S.-M. Chang, Y.-C. Shih, C.-W. Chiang, C.-K. Hsu, C.-K. Lee, C.-T. Lin,
    Y.-H. Chen, and W.-C. Lo, “Reliability tests for a three dimensional chip stacking
    structure with through silicon via connections and low cost,” in Proc. Electronic
    Components Tech. Conf., May 2008, pp. 853–858.
    [43] S.-M. Alam, R.-E. Jones, S. Rauf, and R. Chatterjee, “Inter-strata connection
    characteristics and signal transmission in three-dimensional (3D) integration
    technology,” in Proc. 8th Int. Symp. Quality Electronic Design, March 2007, pp.
    580–585.
    [44] M. Koyanagi, T. Fukushima, and T. Tanaka, “High-density through silicon vias for 3-D
    LSIs,” in Proc. IEEE, vol. 97, no. 1, pp. 49–59, Jan. 2009.
    [45] I. U. Abhulimen, A. Kamto, Y. Liu, S. L. Burkett, and L. Schaper, “Fabrication and
    testing of through-silicon vias used in three-dimensional integration,” in J. Vacuum Sci.
    Tech., vol. 26, no. 6, pp. 1834–1840, Nov. 2008.
    [46] P.-Y. Chen, C.-W. Wu, and D.-M. Kwai, “On-chip TSV testing for 3D IC before
    bonding using sense amplification,” in Proc. Asian Test Symp.(ATS), Nov 2009, pp.
    450–455.
    [47] P.-Y. Chen, C.-W. Wu, and D.-M. Kwai, "On-chip testing of blind and open-sleeve
    TSVs for 3D IC before bonding," in Proc. VLSI Test Symp. (VTS), April 2010,
    pp.263–268.
    [48] K. Crofton, “TSV formation equipment & integration challenges,” CTO Forum,
    Semicon. Taiwan, Sep. 2008.
    [49] Handel H. Jones. Technical Viability of Stacked Silicon Interconnect Technology.
    Xilinx, October 2010. White Paper,
    http://www.xilinx.com/publications/technology/stacked-siliconinterconnect-technolog
    y-ibs-research.pdf.
    [50] B. Banijamali, S. Ramalingam, K. Nagarajan, , R. Chaware, "Advanced reliability study
    of TSV interposers and interconnects for the 28nm technology FPGA," in Proc. IEEE
    Electronic Components and Tech. Conf. (ECTC), May-June 2011, pp. 285–290.
    [51] Zaid Al-Ars, and Ad J. van de Goor, "Soft faults and importance of stresses in memory
    testing," in Proc. of the Design, Automation and Test in Europe Conference and
    Exhibition (DATE), Feb. 2004, pp. 1084-1089.
    [52] R. C. Baumann, “Soft errors in advanced semiconductor devices—Part I: The three
    radiation sources,” in Proc. IEEE Trans. Device and Materials Reliability, vol. 1, no.
    1, pp. 17–22, Mar. 2001.
    [53] N. Derhacobian, V. A. Vardanian, and Y. Zorian, “Embedded memory reliability: The
    SER challenge,” in Proc. IEEE Int. Workshop on Memory Technology, Design and
    Testing (MTDT), Aug. 2004, pp. 104–110.
    [54] G. C. Cardarilli, S. Pontarelli, M. Re, and A. Salsano, "Analysis of Errors and Erasures
    in Parity Sharing RS Codecs," in Proc. IEEE Trans. on Computers (TC), vol. 56, pp.
    1721-1726, Dec. 2007.
    [55] Y.-Y. Hsiao, C.-H. Chen, and C.-W. Wu, "Built-in self-repair schemes for flash
    memories," in Proc. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
    Systems (TCAD), vol. 29, pp. 1243-1256, Aug. 2010.
    [56] D.-C. Bossen, M.-Y. Hsiao, "A System Solution to the Memory Soft Error Problem," in
    Proc. IBM Journal of Research and Development, May 1980, pp. 390-397.
    [57] C.-C. Chi, E. J. Marinissen, S. K. Goel, and C.-W. Wu, "DfT Architecture for 3D-SICs
    with Multiple Towers," in Proc. IEEE European Test Symposium (ETS), May 2011,
    pp.51–56.
    [58] C.-C. Chi, E. J. Marinissen, S.-K. Goel, C.-W. Wu, "Post-bond testing of 2.5D-SICs and
    3D-SICs containing a passive silicon interposer base," in Proc. IEEE Int’l Test Conf.
    (ITC), Sept. 2011, pp.1–10.
    [59] C.-C. Chi, E. J. Marinissen, S. K. Goel, and C.-W. Wu, "Multi-visit TAMs to Reduce the
    Post-Bond Test Length of 2.5D-SICs with a Passive Silicon Interposer Base," in Proc.
    IEEE Asian Test Symp. (ATS), Nov. 2011, pp.451–456.
    [60] M. Taouil, S. Hamdioui, K. Beenakker, and E. J. Marinissen, “Test Cost Analysis for 3D
    Die-to-Wafer Stacking,” in Proc. IEEE Asian Test Symp. (ATS), Dec. 2010, pp.
    435–441.
    [61] Hybrid Memory Cube Consortium, http://hybridmemorycube.org/
    [62] E. J. Marinissen and Y. Zorian, "Testing 3D Chips Containing Through-Silicon Vias," in
    Proc. IEEE Int’l Test Conf. (ITC), Nov. 2009, pp.1–11.
    [63] B. Noia, K. Chakrabarty, and E. J. Marinissen, " Optimization Methods for Post-Bond
    Die-Internal/External Testing in 3D Stacked ICs," in Proc. IEEE Int’l Test Conf. (ITC),
    Nov. 2010, pp. 1–9.
    [64] D. Velenis, E. Marinissen, and E. Beyne, “Cost Effectiveness of 3D Integration
    Options,” in 3D Systems Integration Conference (3DIC), 2010 IEEE International, nov.
    2010, pp. 1 –6.
    [65] E. J. Marinissen, J. Verbree, and M. Konijnenburg, “A Structured and Scalable Test
    Access Architecture for TSV-Based 3D Stacked ICs,” in Proc. VLSI Test Symposium
    (VTS), April 2010, pp. 269 –274.
    [66] E. J. Marinissen, C.-C. Chi, J. Verbree, M. Konijnenburg,“3D DfT architecture for
    pre-bond and post-bond testing,” in Proc. IEEE int’l 3D System Integration Conf. (3D
    IC), Nov. 2010, pp. 1–8.
    [67] C.-W. Chou, J.-F. Li, J.-J. Chen, D.-M. Kwai, Y.-F. Chou, C.-W. Wu, "A Test
    Integration Methodology for 3D Integrated Circuits," in Proc. IEEE Asian Test Symp.
    (ATS), Dec. 2010, pp. 377–382.
    [68] Y.-J. Huang, J.-F. Li, J.-J. Chen, D.-M. Kwai, Y.-F. Chou, C.-W. Wu, "A built-in
    self-test scheme for the post-bond test of TSVs in 3D ICs," in Proc. VLSI Test
    Symposium (VTS), May 2011, pp.20–25.
    [69] K. Smith, P. Hanaway, M. Jolley, R. Gleason, E. Strid, T. Daenen, L. Dupas, B. Knuts,
    E. J. Marinissen, and M. Van Dievel, “Evaluation of TSV and Micro-Bump Probing for
    Wide I/O Testing,” in Proc. IEEE Int’l Test Conf. (ITC), Sept. 2011, pp. 1–10.
    [70] M. Tsai, A. Klooz, A. Leonard, and J. Appel, P. Franzon, “Through Silicon Via(TSV)
    Defect/Pinhole Self Test Circuit for 3D-IC,”in Proc. IEEE Int. Conf. on 3D System
    Integration (3D IC), Sept. 2009, pp. 1–8.
    [71] Minki Cho, Chang Liu, D.-H. Kim, S.-K. Lim, and S. Mukhopadhyay, “Pre-Bond and
    Post-Bond Test and Signal Recovery Structure to Characterize and Repair TSV Defect
    Induced Signal Degradation in 3-D System,” in Proc. IEEE Trans. on Components,
    Packaging and Manufacturing Technology, vol. 1, pp. 1718–1727, Nov. 2011.
    [72] B. Noia.and K. Chakrabarty, “Identification of defective TSVs in pre-bond testing of
    3D ICs,” in Proc. IEEE Asian Test Symp. (ATS), Nov. 2011, pp. 187–194.
    [73] B. Noia.and K. Chakrabarty, “Pre-bond probing of TSVs in 3D stacked ICs,” in Proc.
    IEEE Int’l Test Conf. (ITC), Sept. 2011, pp. 1–10.
    [74] Y.-W. Chou, P.-Y. Chen, M. Lee, and C.-W. Wu, “Cost Modeling and Analysis for
    Interposer-Based Three-Dimensional IC,” have published in VLSI Test Symposium
    (VTS), May 2012.
    [75] T.-H. Wu, P.-Y. Chen, M. Lee, B.-Y. Lin, C.-W. Wu, C.-H. Tien, H.-C. Lin, H. Chen,
    C.-N. Peng, and M.-J. Wang, “A Memory Yield Improvement Scheme Combining
    Built-In Self-Repair and Error Correction Codes,” have been accepted by IEEE Int’l
    Test Conf. (ITC), 2012.
    [76] D. Velenis, M. Stucchi, E. J. Marinissen, B. Swinnen, and E. Beyne, “Impact of 3D
    Design Choices on Manufacturing Cost,” in 3D System Integration, 2009. 3DIC 2009.
    IEEE International Conference on, Sept. 2009, pp. 1 –5.
    [77] M. Cho, C. Liu, D. Kim, S. Lim, and S. Mukhopadhyay, “Design Method and Test
    Structure to Characterize and Repair TSV Defect Induced Signal Degradation in 3D
    System”, in Proc. IEEE/ACM Int, Conf., Computer-Aided Design, 2010, pp. 694–697.
    [78] K. Chakrabarty, S. Deutsch, H. Thapliyal, and F. Ye, “TSV Defects and TSV-Induced
    Circuit Failures: The Third Dimension in Test and Design-for-Test,” in Proc. IEEE Int’l
    Reliability Physics Symp. (IRPS), April 2012, pp. 5F.1.1–5F.1.12.
    [79] Y. Zhang, T. Richardson, S. Chung, C. Wang, and B. Kim, “Fast Copper Plating Process
    for TSV Fill,” in Proc. Int’l Microsystems , Packaging, Assembly, and Circuits Tech.
    (IMPACT), Oct. 2007, pp. 219–222.
    [80] M. Stucchi, D. Perry, G. Katti, W. Dehaene, and D. Velenis, “Test Structures for
    Characterization of Through Silicon Vias,” in Proc. IEEE Int’l Conf. on Microelectronic
    Test Structures (ICMTS), March 2010, pp. 130–134.
    [81] Y. Lou, Z. Yan, F. Zhang, and P. Franzon, “Comparing Through-Silicon-Via (TSV)
    Void/Pinhole Defect Self-Test Methods,” in Informal Proc. Int’l 3D-Test Workshop,
    2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE