簡易檢索 / 詳目顯示

研究生: 陳哲豪
Chen, Che Hao
論文名稱: 利用TRACE/FRAPTRAN/DAKOTA程式於馬鞍山電廠預期暫態未急停安全分析
ATWS Safety Analysis of Maanshan NPP with TRACE/FRAPTRAN/DAKOTA Codes
指導教授: 施純寬
Shih, Chunkuan
王仲容
Wang, Jong Rong
陳紹文
Chen, Shao Wen
口試委員: 林浩慈
Lin, Hao Tzu
鄭憶湘
Cheng, Yi Hsiang
陳俊宇
Chen, Chun Yu
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 206
中文關鍵詞: 馬鞍山電廠預期暫態未急停電廠全黑TRACEFRAPTRANDAKOTA
外文關鍵詞: Maanshan NPP, ATWS, SBO, TRACE, FRAPTRAN, DAKOTA
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究目的,在於針對馬鞍山電廠預期暫態未急停(ATWS)安全分析,建立一套TRACE模式,以確認當事故發生時,反應器冷卻水系統(RCS)的壓力變化可維持在ASME Code Level C Service Limit Criterion所規範的22.06 MPa以內。馬鞍山電廠為美國西屋公司(Westinghouse Electric Corporation)設計的三迴路壓水式電廠,運轉功率在2009年小幅度功率提升至2822 MWt。壓水式反應器預期暫態未急停肇始因素為可預期的暫態加上反應器保護系統的電力或機械失效,導致反應器冷卻水系統壓力驟升。
    為了符合美國核管會(USNRC)法規10 CFR 50.62的要求,馬鞍山電廠設置了ATWS緩抑系統動作線路(AMSAC),主要功能為當發生預期暫態而反應器跳脫系統(RTS)與特殊安全設施引動系統(ESFAS)卻失效的情況下,作為後備系統觸發汽機跳脫及啟動輔助飼水。研究結果指出,在足夠的負緩和劑溫度係數以及AMSAC和閥門正常作動,反應器冷卻水系統壓力仍能維持在法規要求的22.06 MPa以內。
    本研究接著進一步分析了多重失效模式的電廠全黑預期暫態未急停(SBO ATWS),且探討可能的應對措施。除此之外,更建立了FRAPTRAN模式以分析燃料棒可靠度,以及DAKOTA模式於不準度分析。確保結果符合法規要求的RCS壓力低於22.06 MPa、PCT低於1477 K、護套環應變低於0.01、燃料熱焓低於170 cal/g,以及無PCMI發生。


    The objective of this thesis is to develop a TRACE model for Maanshan nuclear power plant to analyze RCS pressure, which should be within 22.06 MPa of ASME Code Level C Service Limit Criterion under ATWS. Maanshan nuclear power plant is a three-loop pressurized water reactor power plant which designed by Westinghouse Electric Corporation, and its power rate is uprated to 2822 MWt by measurement uncertainty recapture since 2009. The PWR ATWS sequence starts with an anticipated transient and the electrical or mechanical failure of the RPS, and the ATWS transient results in a RCS pressure rise.
    According to 10 CFR 50.62 of U.S. NRC, Maanshan NPP has set up AMSAC as a backup system to actuate turbine trip and auxiliary feedwater if RTS and ESFAS were failed. According to the results, with sufficient negative moderator temperature coefficient, normal work of AMSAC and valves, RCS pressure could keep within 22.06 MPa.
    Furthermore, the model of SBO ATWS has been made for multiple failure analysis and discussing probable mitigation strategy. Besides, a FRAPTRAN model has been developed for analyzing fuel rod reliability, and a DAKOTA model developed for uncertainty analysis. To make sure it conforms the regulations of RCS pressure below 22.06 MPa, PCT below 1477 K, cladding hoop strain below 0.01, fuel enthalpy below 170 cal/g, and no PCMI occurred.

    摘要 i ABSTRACT ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 viii ABBREVIATIONS xvi 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文架構 2 第二章 文獻回顧 6 2.1 預期暫態未急停 6 2.2 電廠全黑預期暫態未急停 8 第三章 程式簡介 15 3.1 TRACE程式 15 3.2 SNAP程式 17 3.3 FRAPTRAN程式 24 3.4 DAKOTA程式 29 第四章 馬鞍山電廠模式建立與評估 30 4.1 TRACE模式 30 4.1.1 反應器壓力槽 30 4.1.2 調壓槽 31 4.1.3 蒸汽產生器與飼水控制系統 31 4.1.4 主蒸汽管路 32 4.1.5 蒸汽排放控制系統 32 4.1.6 穩態計算 32 4.2 FRAPTRAN模式 51 4.3 不準度分析模式 58 第五章 預期暫態未急停分析 66 5.1 喪失主飼水預期暫態未急停 66 5.1.1 緩和劑溫度係數效應 66 5.1.2 反應器冷卻水泵跳脫 74 5.1.3 輔助飼水泵跳脫 82 5.2 喪失主冷凝器真空預期暫態未急停 89 5.2.1 緩和劑溫度係數效應 89 5.2.2 反應器冷卻水泵跳脫 95 5.2.3 輔助飼水泵跳脫 103 第六章 電廠全黑預期暫態未急停分析 110 6.1 與電廠全黑比較 110 6.2 短期效應 117 6.3 長期效應 124 第七章 電廠全黑預期暫態未急停應對措施分析 131 7.1 二次側降壓注水策略 131 7.2 一次側降壓策略 139 7.3 一次側降壓注水策略 147 7.4 一次側降壓注水策略燃料棒可靠度分析 157 7.5 一次側降壓注水策略燃料棒不準度分析 167 第八章 結論與建議 173 8.1 結論 173 8.2 建議 174 參考文獻 176 個人著作目錄 184

    1. U.S. Code of Federal Regulations, Title 10, Part 50.62, “Requirements for reduction of risk from anticipated transients without scram (ATWS) events for light-water-cooled nuclear power plants”, USA, 1984
    2. Westinghouse Electric Corporation, Westinghouse Anticipated Transients Without Trip Analysis, Pittsburgh, Pennsylvania, USA, 1974
    3. J.R. Wang, C.H. Chen, H.T. Lin, C. Shih, “Assessment of LONF ATWS for Maanshan PWR Using TRACE Code”, NUREG/IA-0436, U.S. NRC, 2014
    4. 台灣電力公司,第三核能發電廠訓練中心教材, 2006
    5. Atomic Energy Council, “The Investigation Report for Maanshan MUR”, Taiwan, 2008
    6. U.S. Nuclear Regulatory Commission, “Regulatory Effectiveness of the Anticipated Transient Without Scram Rule”, NUREG-1780, USA, 1978
    7. U.S. Nuclear Regulatory Commission, “Anticipated Transient Without Scram for Light Water Reactors”, NUREG-460, USA, 1978
    8. U.S. Nuclear Regulatory Commission, “Amendments To 10 CFR 50 Related to Anticipated Transients Without Scram (ATWS) Events”, SECY-83-293, USA, 1983
    9. 第三核能發電廠終期安全分析(Final Safety Analysis Report),台灣電力公司,1982
    10. 黃平輝、高良書,”馬鞍山一、二號機預期暫態未急停分析”,台灣電力公司,1993
    11. W.G. Shier, M.S. Lu, M.M. Levine, D.J. Diamond, “PWR Loss of Feedwater ATWS: Analysis and Sensitivity Study”, NUREG-33529, USA, 1983
    12. L. Kao, P.H. Huang, “ATWS Analysis for Maanshan PWR Power Plant”, The 4th International Topical Meeting on Nuclear Thermal Hydraulics, Operation and Safety (NUTHOS-4), Taipei, Taiwan, 1994
    13. W.H. Wu, C. Shih, J.R. Wang, “RCS Pressure Predictions under ATWS for Maanshan with MUR”, The 17th International Conference on Nuclear Engineering (ICONE17), Brussels, Belgium, 2009
    14. S. Kliem, S. Mittag, U. Rohde, F.P. Weiβ, “ATWS analysis for PWR using the coupled code system DYN3D/ATHLET”, Annals of Nuclear Energy Vol.36 (2009) pp. 1230-1234, 2009
    15. K.S. Liang, S.C. Chiang, Y.F. Hsu, H.J. Young, B.S. Pei, L.C. Wang, “ The ultimate emergency measures to secure a NPP under an accidental condition with no designed power or water supply”, Nuclear Engineering and Design, Vol. 253, Issue 4, December 2012, pp. 259-268
    16. 台灣電力公司馬鞍山電廠機組斷然處置程序指引,版次2,2012
    17. U.S. Nuclear Regulatory Commission, “Depressurization as an Accident Management Strategy to Minimize the Consequences of Direct Containment Heating”, NUREG/CR-5447, USA, 1990
    18. G.F. De Santi, “Analysis of steam generator U-tube rupture and intentional depressurization in LOBI-MOD2 facility”, Nuclear Engineering and Design, 126 (1991), pp. 113-125
    19. G. Petrangeli, R. Tonomi, F. D’Auria, M. Mazzini, “The SSN: an emergency system based on intentional coolant depressurization for PWRs”, Nuclear Engineering and Design, 143 (1993), pp. 25-54
    20. K. Zhang, X.W. Cao, J. Deng, Z. Wang, L.C. Guo, D.Q. Guo, J.T. Yuan, “Evaluation of intentional depressurization strategy in Chinese 600 MWe PWR NPP”, Nuclear Engineering and Design, 238 (2008), pp. 1720-1727
    21. G.F. Huang, L.L. Tong, J.X. Li, X.W. Cao, “Study on mitigation of in-vessel release of fission products in severe accidents of PWR”, Nuclear Engineering and Design, 240 (2010), pp. 3888–3897
    22. S.H. Kim, S.H. Chang, Y.J. Choi, Y.H. Jeong, “A passive decay heat removal strategy of the integrated passive safety system (IPSS) for SBO combined with LOCA”, Nuclear Engineering and Design, 295 (2015), pp. 346-359
    23. U.S. Nuclear Regulatory Commission, “Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition”, NUREG-0800, USA, 2014
    24. U.S. Code of Federal Regulations, Title 10, Part 50.46, “Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors”, USA, 1984
    25. TRACE V5.0 THEORY MANUAL, V5.840, U.S. Nuclear Regulatory Commission, USA, 2014
    26. TRACE V5.0 USER’S MANUAL, V5.840, U.S. Nuclear Regulatory Commission, USA, 2014
    27. Symbolic Nuclear Analysis Package (SNAP) User’s Manual, Applied Programming Technology Inc., USA, 2012
    28. K.J. Geelhood, W.G. Luscher, C.E. Beyer, FRAPTRAN 1.4: Integral Assessment, Pacific Northwest National Laboratory, USA, 2011
    29. W.G. Luscher, K.J. Geelhood, “Material Property Correlations: Comparisons between FRAPCON-3.4, FRAPTRAN 1.4, and MATPRO”, NUREG/CR-7024, USA, 2011
    30. K.J. Geelhood, W.G. Luscher, C.E. Beyer, J.M. Cuta, FRAPTRAN 1.4: A Computer Code forthe Transient Analysis of Oxide Fuel Rods, Pacific Northwest National Laboratory, USA, 2011
    31. D.L. Hagrman, G.A. Reymann, “MATPRO-Version 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior”, NUREG/CR-0497, Idaho National Engineering Lab, USA, 1981
    32. I.C. Sagrado, L.E. Herranz, “Modeling RIA benchmark cases with FRAPTRAN and SCANAIR: A comparative exercise”, Nuclear Engineering and Design, 278 (2014), pp. 150-162
    33. H.S. Aybar, P. Ortego, “A REVIEW OF NUCLEAR FUEL PERFORMANCE CODES”, Progress in Nuclear Energy, Vol. 46 (2005), No. 2, pp. 127-141, 2005
    34. A. Arkoma, M. Hanninen, K. Rantamaki, J. Kurki, A. Hamalainen, “Statistical analysis of fuel failures in large break loss-of-coolant accident (LBLOCA) in EPR type nuclear power plant”, Nuclear Engineering and Design, 285 (2015), pp. 1-14
    35. A. Kereszturi, I. Panka, A. Molnar, A. Tota, “Multi-physics development for the hot-channel calculation of fast reactivity transients”, Progress in Nuclear Energy, 67 (2013), pp. 74-81
    36. T. Ikonen, H. Loukusa, E. Syrjalahti, Ville Vltavirta, J. Leppanen, V. Tulkki, “Module for thermomechanical modeling of LWR fuel in multiphysics simulations”, Annals of Nuclear Energy, 84 (2015), pp. 111-121
    37. J. Magedanz, M. Avramova, Y. Perin, A.K. Velkov, “High-fidelity multi-physics system TORT-TD/CTF/FRAPTRAN for light water reactor analysis, Annals of Nuclear Energy, 84 (2015), pp. 234-243
    38. F.B. Tas, S. Ergun, “Effects of pellet-to-cladding gap design parameters on the reliability of high burnup PWR fuel rods under steady state and transient conditions”, Energy Conversion and Management, 72 (2013), pp. 88-93
    39. J.R. Wang, C.W. Tsai, H.T. Lin, C. Shih, “Performing Uncertainty Analysis of IIST Facility SBLOCA by TRACE and DAKOTA”, NUREG/IA-0428, USA, 2013
    40. J.R. Wang, J.H. Yang, H.T. Lin, C. Shih, “Uncertainty Analysis for Maanshan LBLOCA by TRACE and DAKOTA”, NUREG/IA-0448, USA, 2014
    41. C. Queral, J. Montero-Mayorga, J. Gonzalez-Cadelo, G. Jimenez, “AP1000 Large-Break LOCA BEPU analysis with TRACE code”, Annals of Nuclear Energy, 85 (2015), pp. 576-589
    42. J. Nielsen, A. Tokuhiro, R. Hiromoto, L. Tu, “Branch-and-Bound algorithm applied to uncertainty quantification of a Boiling Water Reactor Station Blackout”, Nuclear Engineering and Design, 295 (2015), pp. 283-304
    43. G. Pastore, L.P. Swiler, J.D. Hales, S.R. Novascone, D.M. Perez, B.W. Spencer, L. Luzzi, P. Van Uffelen, R.L. Williamson, “Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling”, Journal of Nuclear Materials, 456 (2015), pp. 398-408
    44. S.E. Yakush, P. Kudinov, N.T. Lubchenko, “Coolability of heat-releasing debris bed. Part 1: Sensitivity analysis and model calibration”, Annals of Nuclear Energy, 52 (2013), pp. 59-71
    45. S.E. Yakush, P. Kudinov, N.T. Lubchenko, “Coolability of heat-releasing debris bed. Part 2: Uncertainty of dryout heat flux”, Annals of Nuclear Energy, 52 (2013), pp. 72-79
    46. Brian M. Adams et al., Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.0 User’s Manual, Sandia National Laboratories, Albuquerque, USA, 2014
    47. J.R. Wang, H.T. Lin, Y.H. Cheng, W.C. Wang, C. Shih, “TRACE modeling and its verification using Maanshan PWR start-up tests”, Annals of Nuclear Energy, Vol. 36 (2009) pp. 527-536, 2009
    48. Y.H. Cheng, J.R. Wang, H.T. Lin, C. Shih, “Benchmark calculations of pressurizer model for Maanshan nuclear power plant using TRACE code”, Nuclear Engineering and Design, 239 (2009), pp. 2343-2348
    49. Y.H. Cheng, C. Shih, J.R. Wang, H.T. Lin, “An investigation of steam–water countercurrent flow model in TRACE”, Annals of Nuclear Energy, 37 (2010), pp. 1378-1383
    50. J.H. Yang, J.R. Wang, H.T. Lin, C. Shih, “LBLOCA analysis for the Maanshan PWR nuclear power plant using TRACE”, Energy Procedia, 14 (2012), pp. 292-297
    51. H.T. Lin, J.R. Wang, K.C. Huang, C. Shih, S.C. Chiang, C.C. Liu, “Station blackout mitigation strategies analysis for Maanshan PWR plant using TRACE”, Annals of Nuclear Energy, 89 (2016), pp. 1-18
    52. S.F. Wang, C.C. Wu, J.R. Wang, “Assessment of the RETRAN02/MOD3 and RELAP5/MOD2 pressurizer model”, INER Report, INER-0750, Institute of Nuclear Energy Research, Atomic Energy Council, Taiwan, 1987
    53. Y.H. Cheng, C. Shih, J.R. Wang, H.T. Lin, “Benchmark calculations of pressurizer model for Maanshan nuclear power plant using TRACE code”, The 16th International Conference on Nuclear Engineering (ICONE16), Orlando, Florida, USA, 2008
    54. S.F. Wang, J.R. Wang, “Nodalization study of the model F steam generator secondary side using the RETRAN02/MOD3 code”, INER Report, INER-0852, Institute of Nuclear Energy Research, Atomic Energy Council, Taiwan, 1988
    55. J.R. Wang, C.Y. Liu, Y.S. Chen, S.F. Wang, “Maanshan nuclear power plant startup tests and transient events documentation”, INER Report, INER-T1320, Institute of Nuclear Energy Research, Atomic Energy Council, Taiwan, 1989
    56. T.C. Lyie, T.C. Cheng, C.H. King, “A tape data management system for Maanshan nuclear power plant”, INER Report, INER-OM-0338, Institute of Nuclear Energy Research, Atomic Energy Council, Taiwan, 1997
    57. J.R. Wang, Y.S. Chen, S.F. Wang, “Maanshan unit2 load reduction and net load trip tests transient analyses”, INER Report, INER-0868, Institute of Nuclear Energy Research, Atomic Energy Council, Taiwan, 1988
    58. International Atomic Energy Agency, “Best Estimate Safety Analysis for Nuclear Power Plants: Uncertainty Evaluation”, Safety Report Series 52, IAEA, 2008
    59. International Atomic Energy Agency, “Safety Margins of Operating Reactors: Analysis of Uncertainties and Implications for Decision Making”, TECDOC 1332, IAEA, 2003
    60. G. Palmiotti, M. Salvatores, “The role of experiments and of sensitivity analysis in simulation validation strategies with emphasis on reactor physics”, Annals of Nuclear Energy, 52 (2013), pp. 10-21
    61. K.J. Geelhood, W.G. Luscher, C.E. Beyer, D.J. Senor, M.E. Cunningham, D.D. Lanning, H.E. Adkins, “Predictive Bias and Sensitivity in NRC Fuel Performance Codes”, NUREG/CR-7001, USA, 2009
    62. J. Lee, S. Woo, “Effects of fuel rod uncertainty on the LBLOCA safety analysis with limiting fuel burnup change”, Nuclear Engineering and Design, 273 (2014), pp. 367-375
    63. C. Shih, H.C. Chang, J.R. Wang, S.W. Chen, H.T. Lin, S.C. Chiang, T.Y. Yu, “Fuel Rod Performance Uncertainty Analysis During Overpressurization Transient for Kuosheng Nuclear Power Plant with TRACE/FRAPTRAN/DAKOTA Codes in SNAP Interface”, NUREG/IA-0465, USA, 2016
    64. Guba A., M. Makai, and L. Pal, “Statistical aspects of best estimate method – I”, Reliability Engineering and System Safety”, vol. 80 (2003) pp. 217-232
    65. C.H. Chen, C. Shih, J.R. Wang, “TRACE Analysis of RCS Pressure Estimation under ATWS for Maanshan”, American Nuclear Society Winter Meeting, Washington DC, USA, 2011
    66. C.H. Chen, J.R. Wang, H.T. Lin, C. Shih, “RCS Pressure Predictions under ATWS for Maanshan PWR using TRACE”, The 9th International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-9), Kaohsiung, Taiwan, 2012
    67. C.H. Chen, J.R. Wang, H.T. Lin, C. Shih, “Safety Analysis of Loss of Normal Feedwater ATWS for Maanshan NPP”, the 30th National Conference on Mechanical Engineering of CSME, I-Lan, Taiwan, 2013
    68. C.H. Chen, J.R. Wang, H.T. Lin, C. Shih, “ATWS analysis for Maanshan PWR using TRACE/SNAP code”, Annals of Nuclear Energy, 72C (2014), pp. 1-10
    69. C.H. Chen, J.R. Wang, H.T. Lin, C. Shih, “Various MTC Studies of TRACE with RCS Pressure Predictions under ATWS for Maanshan”, Applied Mechanics and Materials, Vols. 284-287 (2013), pp. 1151-1155
    70. C.H. Chen, J.R. Wang, H.T. Lin, C. Shih, “APPLICATION OF TRACE TO RCS PRESSURE ANALYSIS UNDER ATWS FOR MAANSHAN PWR”, European Nuclear Conference, Manchester, UK, 2012
    71. C.H. Chen, J.R. Wang, H.T. Lin, C. Shih, “TRACE ANALYSIS OF AUXILIARY FEEDWATER CAPACITY FOR MAANSHAN PWR LOSS-OF-NORMAL-FEEDWATER TRANSIENT”, The 45th ANNUAL MEETING ON NUCLEAR TECHNOLOGY, Berlin, Germany, 2013
    72. C.H. Chen, K.C. Huang, S.W. Chen, J.R. Wang, C. Shih, H.T. Lin, S.C. Chiang, C.C. Liu, “ASSESSMENT OF STATION BLACKOUT MITIGATION STRATEGY APPLYING THE ULTIMATE RESPONSE GUIDELINE TO MAANSHAN PWR”, the 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16), Chicago, Illinois, USA, 2015
    73. C.H. Chen, J.R. Wang, H.T. Lin, C. Shih, “TRACE Analysis of Station Blackout without Scram for Maanshan PWR”, International Symposium on Frontiers of Technology for the Future: Low Carbon Energy and Life (FoTEL 2014), Hsinchu, Taiwan, 2014
    74. C.H. Chen, J.R. Wang, H.T. Lin, C. Shih, “Pressure Estimation of SBO ATWS for Maanshan PWR”, International Congress on Advances in Nuclear Power Plants (ICAPP), Nice, France, 2015
    75. C.H. Chen, J.R. Wang, H.T. Lin, S.W. Chen, C. Shih, “Analysis of SBO ATWS for Maanshan PWR”, Kerntechnik, Vol. 80 (2015), No. 5, pp. 431-439
    76. Westinghouse Electric Company, Westinghouse Owners Group Report, “WOG 2000 Reactor Coolant Pump Seal Leakage Model for Westinghouse PWRs”, WCAP-15603, 2003
    77. Westinghouse Electric Company, Westinghouse Owners Group Report, “Reactor Coolant Pump Seal Performance Following a Loss of All AC Power,”, WCAP-10541, Revision 2, 1986 G. Petrangeli, R. Tonomi, F. D’Auria, M. Mazzini, “The SSN: an emergency system based on intentional coolant depressurization for PWRs”, Nuclear Engineering and Design, 143 (1993), pp. 25-54

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE