簡易檢索 / 詳目顯示

研究生: 王嘉熙
Wang, Chia-Hsi
論文名稱: Design and Implementation of Fabry-Perot Interferometer Devices Using Standard CMOS Process
CMOS 標準製程於設計Fabry-Perot 干涉元件之開發與實現
指導教授: 方維倫
Fang, Weileun
盧向成
Lu, Shiang-Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 84
中文關鍵詞: 互補式金屬氧化物半導體
外文關鍵詞: CMOS-MEMS, Fabry-Perot
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 互補式金屬氧化半導體 (Complementary Metal Oxide Semiconductor,CMOS)半導體製程在台灣已是成熟的技術平台,利用CMOS平台發展出相關元件,例如光學微機電系統,有逐步增加的趨勢。透過CMOS-MEMS平台,製作光學微結構晶片,不僅可以利用半導體製程本身可縮小線寬和堆疊的結構,使其提高其附加價值,因此,CMOS技術之發展重要性越來越大。
    本研究欲利用TSMC 0.35μm 2P4M CMOS標準製程設計Fabry-Perot干涉元件,利用二氧化矽層當作結構層,金屬層當作犧牲層,透過濕式蝕刻方式來實現微光機結構,本設計主要優點有兩項:(1)利用製程平台的蝕刻金屬層當作Fabry-Perot共振腔,Fabry-Perot共振腔穩定度高 (2)搭配致動器製作可動式Fabry-Perot 干涉元件,調變Fabry-Perot共振腔長度。量測結果驗證反射光的共振干涉波長,並藉由外部致動器調整其共振腔長度。

    關鍵字:互補式金屬氧化物半導體,Fabry-Perot


    摘 要 ii Abstract iii 目 錄 v 圖目錄 vii 表目錄 xi 第一章 前言 1 1-1研究動機 1 1-2文獻回顧 2 1-2-1 MEMS 光學元件 3 1-2-2 微致動器 5 1-3 研究動機 8 第二章 元件設計與分析 16 2-1 Fabry-Perot干涉元件 16 2-2 靜電致動器 18 2-3 模擬分析 19 第三章 製程與結果 30 3-1 TSMC 0.35μm 2P4M CMOS標準製程 30 3-2 CMOS-MEMS後製程 31 3-3 定義CMOS-MEMS元件 32 3-4 製程結果與討論 34 第四章 量測與結果 47 4-1 致動器位移量測 47 4-2 共振頻量測和光譜量測 48 第五章 結論與未來工作 59 5-1 結論 59 5-2 未來工作 60 參考文獻 62 附錄A 背向蝕刻Fabry-Perot干涉元件 68 A-1 簡介 68 A-2 設計與模擬 68 A-2-1 熱致動器 68 A-2-1 靜電致動器 69 A-2-1 電磁致動器 70 A-3 製程與結果 71

    [1] H. Baltes, O. Brand, A. Hierlemann, D Lange and C. Hagleitner,“CMOS MEMS –present and future,”The 15th IEEE International conference on Micro Electro Mechanical System, Las Vegas, NV, USA, Jan, 2002, pp 459-466.
    [2] Texas Instruments, Inc., http://www.dlp.com/tech/
    [3] Analog Device, Inc., http://www.analog.com/
    [4] Qualcomm MEMS Technologies, Inc., http://www.qualcomm.com/qmt/
    [5] S. J. Walker and D. J. Nagel, Optics and MEMS, Washington D.C ., Naval Res. Lab, 1999.
    [6] M. C. Wu, “Micromachining for optical and optoelectronic systems,” Proceedings of the IEEE, Vol. 85, pp 1833-1856, 1997
    [7] J. M. Vaughan and M. A. DPhil, The Fabry-Perot Interferometer: History, Theory, Practice and Application.1nd Ed., Oxon , UK: Taylor & Francis,
    [8] S. O. Kasap, Optoelectronics and Photonics , Upper Saddle River, New Jersey, Prentice Hall, 1999.
    [9] J. H. Jerman, D. J. Clift and S. R. Mallinson, “A miniature Fabry-Perot Interfeometer with a Corrugated Silicon Diaphragm Support”, Solid-State Sensor and Actuator Workshop 4th Technical Digest, Hilton Head Island, SC, USA, June , 1990, pp 140-144.
    [10] N. F. Raley, D. R. Ciario, J. C. Koo, B. Beiriger, J. Trujillo, C. Yu, G. Loomis and R. Chow , “A Fabry-Perot Microinterferometer for Visible Wavelength”, Solid-State Sensor and Actuator Workshop 5th Technical Digest, Hilton Head Island, SC , USA, June, 1992, pp 170-173.
    [11] J. H. Correia, M. Bartek and R. F. Wolffenbuttel, “Bulk-micromachined tunable Fabry–Perot microinterferometer for the visible spectral range”, Sensors and Actuators ,Vol. 76 , pp 191–196, 1999.
    [12] J. Stone and L. W. Stulz “Optical communication using Fabry-Perot cavites” USA patent No.4861136.
    [13] X. M. Zhang and J. B. Zhang,“Study of injection-locking phenomenon using MEMS tunable laser” 18th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2005), Miami Beach, FL, Jan, 2005, pp 80-83.
    [14] M. W. Pruessner, T. H. Stievater1, W. S. Rabinovich, J. L. Stepnowski and R.A. McGill1,“Integrated photonic MEMS chemical sensors” Solid-State Sensors, Actuators and Microsystems Conference, 2009, Denver, CO, USA, June, 2009, pp 481-484.
    [15] R. Melamud, A. A. Davenport, G. C. Hil, I. H. Chan, F. Declercq, P. G. Hartwe, B. L. Pruit, “Development of an SU-8 Fabry-Perot blood pressure sensor” 18th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2005), Miami Beach, FL, Jan, 2005, pp 810-813.
    [16] E. P. Gallois and M. d. Labachelerie, “Thermal actuators used for a micro-optical bench: application for a tunable Fabry-Perot filter,” 12th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2003) , Boston, Massachusetts, USA, 2003, pp 1419- 1422 .
    [17] A. Jain and H. Xie, “An Electrothermal Microlens Scanner With Low-Voltage Large-Vertical-Displacement Actuation,” IEEE Photonics Technology Letters, Vol. 17, pp 1971-1973, 2005.
    [18] C.-M. Sun, C.-W. Wang, and W. Fang, “CMOS MEMS Lorentz Force Dual-axis Scanning-Stage,” Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand, Jan, 2007, pp 580-583.
    [19] 楊智翔“新型CMOS MEMS微光學定位、聚焦平台之設計與製造”清華大學碩士論文,2008.
    [20] J. M.-L. Tsai, H.-Y. Chu, J. Hsieh, and W. Fang, “The BELST II Process for Silicon HARM Vertical Comb Actuator and Its Applications,” Journal of Micromechanics and Microengineering, Vol. 14, pp 235-241, 2004.
    [21] H.-C. Chang, J. M.-L. Tsai, H.-C. Tsai, and W. Fang, “Design, Fabrication, and Testing of a 3-DOF HARM Micromanipulator on (111) Silicon Substrate,” Sensors and Actuators A, Vol. 125, pp 438-445, 2005.
    [22] M. Wu, H.-Y. Lin, and W. Fang, “Design of Novel Sequential Engagement Vertical Comb Electrodes for Analog Micro-mirror,” IEEE Journal of Photonics Technology Letters, Vol. 19, pp 1586-1588, 2007.
    [23] W. Tan, M. Wu, and W. Fang, “Novel MUMPs-compatible single-layer Out-of-plane Electrothermal Actuator,” Journal of Microlithography, Microfabrication and Microsystems, Vol. 2, pp 91-95, 2003.
    [24] M. Wu, and W. Fang, “Design and Fabrication of MEMS Devices Using the Integration of MUMPs, Trench-refilled Molding, DRIE, and Bulk Silicon Etching Processes,” Journal of Micromechanics and Microengineering, Vol. 15, pp 535-542, 2005.
    [25] J. Hsieh, S.-Y. Hsiao, C.-F. Lai, and W. Fang, “Integration of UV Curable Polymer Lens and MUMPs Structure on SOI Optical Bench,” Journal of Micromechanics and Microengineering, Vol. 17, pp 1703-1709, 2007.
    [26] W. Tang, M. Wu, Y.-P. Ho, H.-C. Chang, and W. Fang, “Novel MUMPs-compatible single-layer Out-of-plane Electrothermal Actuator,” SPIE's International Symposium on Smart Materials, Nano-, and Micro- Smart Systems, Melbourne, Australia, Nov, 2002, pp 331-341.
    [27] M. Wu, C.-F. Lai, and W. Fang, “Integration of the DRIE, MUMPs, and Bulk Micromachining for Superior Micro-Optical Systems,” 17th IEEE MEMS International Conference, Maastricht, the Netherlands, Jan, 2004, pp 97-100.
    [28] 賴群峰“整合UV膠微透鏡及MUMPs元件之SOI微光學平台”清華大學碩士論文, 2004.
    [29] H. Guckel, J. Klein, T. Christenson, K. Skrobis, M. Laudon, and E. G. Lovell, “Theremo-magnetic metal flexure actuators,” Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, 1992 , pp 74-75.
    [30] A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A Two-Axis Electrothermal Micromirror for Endoscopic Optical Coherence Tomography,” Selected Topics in Quantum Electronics, Vol. 10, pp 636 - 642, 2004.
    [31] A. Jain and H. Xie, “An Electrothermal SCS Micromirror for Large Bi-Directional 2-D scanning,” Solid-State Sensors, Actuators and Microsystems, 2005 , June, 2005, Seoul, Korea, pp 988-991.
    [32] A. Jain, and H. Xie, “A Tunable Microlens Scanner with Large-Vertical-Displacement Actuation,” Micro Electro Mechanical Systems, 2005(MEMS 2005) , Miami Beach, FL, pp 92-95, 2005.
    [33] S. T. Todd, A. Jain, H. Qu, and H. Xie, “A 3-D Micromirror Utilizing Inverting-Series-Connected Electrothermal Bimorph Actuators for Piston and Tilt Motion,” 2005 IEEE/LEOS International Conference on Optical MEMS, Oulu, Finland, Aug , 2005, pp 27-28.
    [34] H. Xie, Y. Pan, and G. K. Fedder, “A CMOS MEMS Micromirror With Large Out-of-Plane Actuation,” ASME International Mechanical Engineering Congress and Exposition, New York, NY, USA, 2001, pp 450-457.
    [35] H. Xie, Y. Pan, and G. K. Fedder, “A CMOS-MEMS Mirror With Curled-Hinge Comb Drives,” Journal of Microelectromechanical Systems, Vol. 12, pp 450-457, 2003.
    [36] H.-K. Ko, and H.-J. Shin, “Micromirror device for image display apparatus,” USA patent No.6351330, 2002.
    [37] D. J. Young, and B. E. Boser, “A micromachine-based RF low-noise voltage-controlled oscillator,” Custom integrated circuit conference, processing of the IEEE, Santa Clara, CA , USA., May, 1997, pp 5-8.
    [38] A. Oz, and G. K. Fedder, “RF CMOS MEMS capacitor having large tuning range,” TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference , Boston, Massachusetts, USA, June, 2003, pp 8-12.
    [39] H. Luo, G. K. Fedder, and L.R. Carley, “A 1mG Lateral CMOS-MEMS Accelerometer,” The 13th Micro Electro Mechanical Systems(MEMS 2000). , Miyazaki, Japan, Jan, 2000, pp 502-507.
    [40] Sandia National Lab., http://www.sandia.gov/
    [41] G. K. Fedder, S. Santhanam, M.L. Reed, S.C. Eagle, D.F. Guillou, M. S-C. Lu, and L. R. Carley, “Laminated high-aspect-ratio microstructure in a conventional CMOS process,” Sensor and actuator A, Vol. 57, pp 103-110, 1996.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE