研究生: |
王清輝 Wang, Chin-Hui |
---|---|
論文名稱: |
氧化鋅氧化錫系非晶透明導電薄膜 |
指導教授: |
吳振名
Wu, Jenn-Ming |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 透明 、導電 、氧化鋅 、氧化錫 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來隨著光電產業發展,透明導電氧化物薄膜被廣泛的研究及使用,目前多使用的材料就是ITO,但由於氧化銦的短缺以及平面顯示器與太陽能電池產業的大量需求,急需發展出替代之材料。此外,由於OLED與大面積平面顯示器的需求下,非晶(amorphous)的TCO也逐漸受到重視,但基本上使用的材料還是ITO及其化合物;故在a-TCO的部分也急需發展出替代之材料。
在許多被研究的材料中,ZTO是十分有希望的候選材料,首先是因為ZnO與SnO2較In2O3便宜許多;其次是ZTO薄膜同時擁有ZnO在還原氣氛下十分穩定與SnO2在氧化氣氛下穩定和抗酸耐鹼的特性,這與ITO所缺乏的。而且這兩種材料沒有毒性在地球上純量豐富。但目前ZTO薄膜最大的問題就是導電性質較差,與含有In2O3的材料相比電阻率多了1-2數量級,因此有研究想藉由常用的摻雜方式來改善,但成效不彰且機制尚不明瞭。故本實驗想藉由氫離子與鈮離子的摻雜,來達到降低電阻率的目的。
本實驗採用射頻磁控濺鍍法(rf-sputtering)在玻璃基板鍍上a-ZTO薄膜,並藉由兩階段的退火熱處理使電阻率下降至約8 x10-3 Ωcm。並且試著以氫摻雜與鈮摻雜的方式來提升導電性質:摻雜氫的方式是利用在濺鍍氣體中加入氫氣,然而目前尚無法成功使薄膜電阻下降,且因為加入氫氣所薄膜品質較差,導電性質反而來的差;但仍可利用兩階段退火使電阻率下降到約8x10-3 Ωcm,穿透率也在85%以上。另外也以嘗試鈮摻雜,但摻雜鈮的效果反而使電阻率上升至約5 x10-2 Ωcm,與其他研究的結果類似。未來也可嘗試不同的摻雜,希望可以使得導電性質再提升,使得ZTO有機會成為新一代的a-TCO薄膜。
1 R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, Journal of Applied Physics 83, 2631-2645 (1998).
2 Z. C. Jin, I. Hamberg, and C. G. Granqvist, Journal of Applied Physics 64, 5117-5131 (1988).
3 A. E. Rakhshani, Y. Makdisi, and H. A. Ramazaniyan, Journal of Applied Physics 83, 1049-1057 (1998).
4 K. L. Chopra, S. Major, and D. K. Pandya, Thin Solid Films 102, 1-46 (1983).
5 楊明輝, 工業材料 179, 134 (2001).
6 C. G. Granqvist, Solar Energy Materials and Solar Cells 91, 1529-1598 (2007).
7 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488-492 (2004).
8 U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, Journal of Applied Physics 98, 103 (2005).
9 G. J. Exarhos and X. D. Zhou, Thin Solid Films 515, 7025-7052 (2007).
10 H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, Nature 389, 939-942 (1997).
11 J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, and L. D. Chen, Applied Physics Letters 84, 541-543 (2004).
12 T. Minami, Semiconductor Science and Technology 20, S35-S44 (2005).
13 M. Batzill and U. Diebold, Progress in Surface Science 79, 47-154 (2005).
14 T. Minami, Thin Solid Films 516, 1314-1321 (2008).
15 C. W. Ow-Yang, H. Y. Yeom, and D. C. Paine, Thin Solid Films 516, 3105-3111 (2008).
16 T. Minami, in Transparent and conductive multicomponent oxide films prepared by magnetron sputtering, Baltmore, Maryland, 1998 (Amer Inst Physics), p. 1765-1772.
17 T. J. Coutts, D. L. Young, X. Li, W. P. Mulligan, and X. Wu, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 18, 2646-2660 (2000).
18 潘漢昌、蕭銘華、蘇健穎、蕭健男, 科儀新知 26, 46 (2004).
19 X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, Applied Physics Letters 83, 1875-1877 (2003).
20 X. L. Guo, H. Tabata, and T. Kawai, Journal of Crystal Growth 223, 135-139 (2001).
21 J. P. Lin and J. M. Wu, Applied Physics Letters 92, 3 (2008).
22 M. Orita, H. Ohta, M. Hirano, S. Narushima, and H. Hosono, Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties 81, 501-515 (2001).
23 H. Hosono, M. Yasukawa, and H. Kawazoe, Journal of Non-Crystalline Solids 203, 334-344 (1996).
24 H. Hosono, Journal of Non-Crystalline Solids 352, 851-858 (2006).
25 J. R. Bellingham, W. A. Phillips, and C. J. Adkins, Journal of Physics-Condensed Matter 2, 6207-6221 (1990).
26 H. Hosono, N. Kikuchi, N. Ueda, H. Kawazoe, and K. Shimidzu, Applied Physics Letters 67, 2663-2665 (1995).
27 K. Tominaga, T. Takao, A. Fukushima, T. Moriga, and I. Nakabayashi, Vacuum 66, 505-509 (2002).
28 T. Moriga, Y. Hayashi, K. Kondo, Y. Nishimura, K. Murai, I. Nakabayashi, H. Fukumoto, and K. Tominaga, Journal of Vacuum Science & Technology A 22, 1705-1710 (2004).
29 H. Enoki, T. Nakayama, and J. Echigoya, Physica Status Solidi a-Applied Research 129, 181-191 (1992).
30 Y. S. Shen and T. S. Zhang, Sensors and Actuators B-Chemical 12, 5-9 (1993).
31 D. Kovacheva and K. Petrov, Solid State Ionics 109, 327-332 (1998).
32 Y. Inaguma, M. Yoshida, and T. Katsumata, Journal of the American Chemical Society 130, 6704-+ (2008).
33 T. Minami, S. Takata, H. Sato, and H. Sonohara, in PROPERTIES OF TRANSPARENT ZINC-STANNATE CONDUCTING FILMS PREPARED BY RADIO-FREQUENCY MAGNETRON SPUTTERING, 1995 (Amer Inst Physics), p. 1095-1099.
34 D. L. Young, D. L. Williamson, and T. J. Coutts, Journal of Applied Physics 91, 1464-1471 (2002).
35 D. L. Young, H. Moutinho, Y. Yan, and T. J. Coutts, Journal of Applied Physics 92, 310-319 (2002).
36 J. D. Perkins, J. A. del Cueto, J. L. Alleman, C. Warmsingh, B. M. Keyes, L. M. Gedvilas, P. A. Parilla, B. To, D. W. Readey, and D. S. Ginley, Thin Solid Films 411, 152-160 (2002).
37 Y. Hayashi, K. Kondo, K. Murai, A. Moriga, I. Nakabayashi, H. Fukumoto, and K. Tominaga, Vacuum 74, 607-611 (2004).
38 T. Moriga, T. Okamoto, K. Hiruta, A. Fujiwara, I. Nakabayashi, and K. Tominaga, Journal of Solid State Chemistry 155, 312-319 (2000).
39 T. Moriga, Y. Nishimura, H. Suketa, K. I. Murai, K. Tominaga, and I. Nakabayashi, International Journal of Modern Physics B 20, 3902-3907 (2006).
40 K. Satoh, Y. Kakehi, A. Okamoto, S. Murakami, K. Moriwaki, and T. Yotsuya, Thin Solid Films 516, 5814-5817 (2008).
41 A. I. Martinez and D. R. Acosta, Thin Solid Films 483, 107-113 (2005).
42 J. H. Bae, J. M. Moon, J. W. Kang, H. D. Park, J. J. Kim, W. J. Cho, and H. K. Kim, Journal of the Electrochemical Society 154, J81-J85 (2007).
43 W. Lim, Y. L. Wang, F. Ren, D. P. Norton, Kravchenko, II, J. M. Zavada, and S. J. Pearton, Applied Surface Science 254, 2878-2881 (2008).
44 B. Chapman,“Glow Discharge Processes”, John Wiley & Sons. Inc., N. Y., (1980).
45 A. Martel, F. Caballero-Briones, R. Bartolo-Perez, A. Iribarren, R. Castro-Rodriguez, A. Zapata-Navarro, and J. L. Pena, Surface & Coatings Technology 148, 103-109 (2001).
46 J. H. Ko, I. H. Kim, D. Kim, K. S. Lee, T. S. Lee, B. Cheong, and W. M. Kim, Applied Surface Science 253, 7398-7403 (2007).
47 T. Minami, S. Takata, H. Sato, and H. Sonohara, JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS 13, 1095-1099 (1995).
48 S. Major, M. C. Bhatnagar, S. Kumar, and K. L. Chopra, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 6, 2415-2420 (1988).
49 S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, Applied Physics Letters 49, 394-396 (1986).
50 M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, Applied Surface Science 158, 134-140 (2000).
51 L. W. Lai and C. T. Lee, Materials Chemistry and Physics 110, 393-396 (2008).
52 M. N. Islam, T. B. Ghosh, K. L. Chopra, and H. N. Acharya, Thin Solid Films 280, 20-25 (1996).
53 L. Y. Chen, W. H. Chen, J. J. Wang, F. C. N. Hong, and Y. K. Su, Applied Physics Letters 85, 5628-5630 (2004).
54 S. H. Lee, T. S. Lee, K. S. Lee, B. Cheong, Y. D. Kim, and W. M. Kim, Journal of Physics D-Applied Physics 41, 7 (2008).
55 K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, S. O. Kucheyev, C. Jagadish, J. S. Williams, R. G. Wilson, and J. M. Zavada, Applied Physics Letters 81, 3996-3998 (2002).
56 A. Hollander and M. R. Wertheimer, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 12, 879-882 (1994).
57 王家俊,Growth of Hydrogen Doped Zinc Oxide Thin Film by RF Magnetron Sputtering. 國立成功大學化學工程研究所碩士論文,2003
58 http://www.iap.tuwien.ac.at/www/surface/sputteryield
59 M. Suzuki, H. Ohdaira, T. Matsumi, M. Kumeda, and T. Shimizu, Japanese Journal of Applied Physics 16, 221-226 (1977).