簡易檢索 / 詳目顯示

研究生: 繁玉萍
Yu-Ping Poh
論文名稱: 台灣島形成過程對台灣淡水魚族群遺傳結構影響之研究
The study of the influence by the process of
指導教授: 曾晴賢
Chyng-Shyan Tzeng
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 53
中文關鍵詞: 生物相淡水魚中央山脈
外文關鍵詞: biota, freshwater fish, Central Mountain Range
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣位於歐亞大陸板塊邊緣。自台灣島形成以來,便不斷有許多物種從歐亞大陸遷徙來台,形成台灣主要的生物相。
    自從約五百萬年前台灣島形成以來,中央山脈便持續受到擠壓而抬升,影響台灣地形地貌甚鉅,而這當然也會影響台灣的生物相組成。長久以來,許多的研究都認為:台灣島的東西兩岸物種組成有明顯的差異,而這些差異應該就是因為中央山脈的阻隔所造成的。

    本研究以粒線體DNA作為分子標誌,利用台灣產淡水魚作為材料,探討中央山脈的形成對於台灣島內物種遺傳分化的影響。並利用分子鐘的理論,定出中央山脈開始造成東西部族群隔離的時間點,並推算台灣與大陸族群分歧的年代。其中由台灣鏟頜魚的分子鐘定年結果得知,中央山脈在南北隆起的時間並不一致,北部的山脈在台灣島初形成之時,便已造成隔離;反之,南部的山脈則一直到近期才對東西部的族群造成隔離。

    參照台灣其他生物之族群遺傳研究,本研究認為中央山脈影響東西兩岸物種及分子遺傳組成,是藉由以下兩種機制:

    1. 當物種有兩次以上入侵的事件時,中央山脈可作為一個屏障,將東西兩岸的物種隔離。例如台灣間爬岩鰍與台東間爬岩鰍的分佈模式。

    2. 中央山脈的隆起事件,為東西兩岸的物種提供隔離種化的動力。例如明潭吻蝦虎魚與大吻蝦虎魚的種化事件。

    根據以上結果本研究重新定位並釐清了中央山脈在台灣生物相形成上的地位。


    Taiwan Island locates at the margin of Eurasia plate. Lots of species have dispersed from the mainland of Eurasia to Taiwan after the formation of the island. The main biota of Taiwan has formed consequently.
    Central Mountain Range has kept uplifting for about 5 million years since the appearance of Taiwan Island. The uplifting of Central Mountain Range significantly affects the surface of Taiwan and certainly shapes the biota composition. Therefore, many researches have indicated that: The biota composition between the east and west Taiwan displays apparent differences, and the differences should be resulted from the isolation by Central Mountain Range.

    This study chose freshwater fishes and employed mitochondrial DNA as the molecular marker to analyze the genetic divergences derived from the formation of Central Mountain Range. This study also predicted the divergence time of the populations aside of Central Mountain Range and aside of Taiwan Strait based on the molecular clock theory. The molecular clock results suggest a discrepancy of the uplifting time of north and south ridges of the Central Mountain Range. The isolation caused by the north ridge was consistent since the appearance of Taiwan. However, the isolation resulted from the south ridge still remained imperceptible recently.

    Referring to previous researches of other animal population genetic structure in Taiwan, this study concluded that Central Mountain Range influences the formation of the different biota composition via these two mechanisms:

    1. Central Mountain Range performs a dispersal barrier role while more than one invasion event has happened, ex. Hemimyzon formosanum and H. taitungensis model.

    2. The uplifting of Central Mountain Range prevents the gene flow and derives speciation events, ex. Rhinogobius candidianus and R. gigas.

    Based on these results this study redefines and clarifies the position of Central Mountain Range on the biota formation in Taiwan.

    英文摘要………………………………………………………………………II

    謝誌……………………………………………………………………………IV

    目錄……………………………………………………………………………V

    圖表目次………………………………………………………………………VI

    壹、導論

    一. 前言………………………………………………………………………1

    二. 地理事件與種化機制……………………………………………………2

    三. 粒線體DNA之特性………………………………………………………4

    四. 分子時鐘模型的建立……………………………………………………5

    貳、材料與方法

    一. 標本採集及保存…………………………………………………………8

    二. DNA萃取……………………………………………………………………8

    三. PCR反應……………………………………………………………………9

    四. 定序反應…………………………………………………………………10

    五.資料分析…………………………………………………………………11

    參、結果

    一. 定序結果…………………………………………………………………13

    二. 資料分析…………………………………………………………………15

    肆、討論

    一. 平原性魚種之分布機制…………………………………………………18

    二. 溪流性魚種之分布機制…………………………………………………21

    三. 台灣間爬岩鰍與台東間爬岩鰍之種化…………………………………24

    四. 東亞草蜥屬之種化………………………………………………………24

    五. 烏頭翁與白頭翁的種化…………………………………………………25

    六. 日本絨螯蟹與台灣絨螯蟹之種化………………………………………27

    七. 中央山脈在台灣島生物地理上的地位…………………………………27

    伍、參考及引用文獻

    一. 西文部分…………………………………………………………………29

    二. 中文部分…………………………………………………………………31

    陸、圖…………………………………………………………………………33

    柒、表…………………………………………………………………………52

    西文部分
    Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge beween population genetics and systematics. Annual Review of Ecology and Systematics 18:489-522
    Avise JC (1994) Molecular Markers, Natural History and Evolution. Chapman and Hall. New York
    Avise JC (1998) The history and purview of phylogeography: a personal reflection. Mol Ecol 7:371-379
    Benton MJ (1999) Early origins of modern birds and mammals: molecular vs. morphology. Bioessays 21:1043–1051
    Boggs S, Wang WC, Lewis FS, Chen JC (1979) Sediment properties and water characteristics of the Taiwan shelf and slope. Acta Oceanographica Taiwanica 10:10-49
    Brower AVZ (1994) Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc Natl Acad Sci USA 91:6491-6495
    Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225-239
    Bermingham E, Martin AP (1998) Comparative mtDNA phylogeography of neotropical freshwater fishes: testing shared history to infer the evolutionary landscape of lower Central America. Mol Ecol 7:499-517
    Brazil MA (1991) The Birds of Japan. Smithsonian Institution Press.
    Chang YS, Huang FL, Lo TB (1994) The complete nucleotides sequence of carp (Cyprinus carpio) mitochondrial genome. J Mol Evol 38:138-155
    Cockerham CC (1969) Variance of gene frequencies. Evolution 23:72-84
    Cockerham CC (1973) Analyses of gene frequencies. Genetics 74:679-700
    Doda JN, Wright CT, Clayton DA (1981) Elongation of displacement-loop strands in human and mouse mitochondrial DNA is arrested near specific template sequences. Proc Natl Acad Sci USA 78:6116-6120
    Emery KO, Nino H, Sullivan B (1971) Post-Pleistocene levels of the East China Sea. Woods Hole Oceanographic Institute, Woods Hole, Mass., Contribution no. 2441, pp. 381-390
    Forey PL, Littlewood DTJ, Ritchie P, Meyer A (1996). Interrelationships of elopomorph fishes. In “Interrelationships of fishes” (Stiassny MLJ, Parenti LR, Johnson GD, Eds), pp. 175-191. Academic Press, San Diego.
    Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. A method based on mutation distances as estimated from cytochrome c sequences is of general applicability. Science 155: 279-284.
    Huang CY, Yuan PB, Song SR, Lin CW, Wang C, Chen MT, Shyu CT, Karp B (1995) Tectonics of short-lived intra-arc basins in arc-continent collisionterrane of the Costal Range, eastern Taiwan. Tectonics. 14:19-38
    Huang CY, Liew PM, Zhao M, An Z, Chang TC, Kuo CM Chen MT, Wang CH Zheng LF (1997) Deep Sea and lake sediment records of the Southeast Asian paleomonsoons in the last 25,000 kyrs. Earth and Planetary Sci. Lett. 146:59-72
    Jean CT, Lee SC, Hui CF, Chen CT (1995) Phylogenetic relationships of fishes of the subfamily Sparinae (Perciformes: Sparidae) from the costal waters of Taiwan. J Zool Syst Evol Res 33:49-53
    Kimura M (1980) A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111-120
    Knowles LL (2000) Tests of Pleistocene speciation in montane grasshoppers (Genus Melanoplus) from the sky island of western North America. Evolution 54:1337-1348
    Knowlton N, Weigt LA, Solorzano LA, Mills DA, Bermingham E (1993) Divergence in proteins, mitochondrial DNA, and reproductive compatibility across the Isthmus of Panama. Science 260:1629-1632
    Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proc R Soc Lond B 265:2257-2263
    Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196-6200
    Kumar S, Tamura K, Nei M (1993) MEGA: molecular evolutionary genetics analysis, version 1.02. The Pennsylvania State University, University Park, PA
    Lin YS, Poh YP, Tzeng CS (2001) A phylogenyof freshwater eels inferred from mitochondrial genes. Mol Phyl Evol 20:252-261
    Nei M (1987) Molecular evolutionary genetics. Columbia University Press. New York
    Patterson C (1993) Osteichthyes: Teleostei. In “The Fossil Record” (M. J. Benton Ed.), Vol. 2, pp 621-656. Chapman & Hall, London.
    Saiba E, Tanzariello R, Reyes A, Pesole G, Saccone C (1997) Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205:125-140
    Stepien CA, Kocher TD (1997) Molecules and morphology in studies of fish evolution. In: Molecular Systematics of Fishes. Kocher TD, Stepien CA (eds.) Academic Press. pp. 1-11
    Tamura K, Nei M (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512-526.
    Teng LS (1990) Geotectonic evolution of Late Cenozoic arc-continent collision in Taiwan. Tectonophysics 183:57-76
    Toda M (1999) Historical biogeography of East Asian populations of Rana limnocharis (Amphibia: Anura): A review. In “Tropical island herpetofauna” pp. 299-315
    Tzeng CS (1986) Distribution of the freshwater fishes of Taiwan. J Taiwan Mus 39:127-146
    Tzeng CS, Hui CF, Shen SC, Huang PC (1992) The complete nucleotide sequence of the Crossostoma lacustre mitochondrial genome: conservation an variations among vertebrates. Nucleic Acids Res 20:4853-4858
    Walberg MW, Clayton DA (1981) Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA. Nucleic Acids Res 9:5411-5421
    Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Evolving Genes and Proteins. Bryson V, Vogel HJ (eds.) pp. 97-166

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE