簡易檢索 / 詳目顯示

研究生: 王振宇
Cheng-Yu Wang
論文名稱: 使用在非線性光纖中的極化偏轉現象來完成全光互斥或邏輯閘運算
All-Optical XOR Operation Generation Using Nonlinear Polarization Rotation in a Single Highly Nonlinear Fiber
指導教授: 馮開明
Kai-Ming Feng
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 88
中文關鍵詞: 互斥或邏輯閘非線性光纖極化偏轉光柯爾效應相位匹配錯位半導體光放大器光曼徹斯特碼
外文關鍵詞: Exclusive-OR Logic Gate, HNLF, Polarization Rotation, Optical Kerr Effect, Phase-Matching, Walk-Off, SOA, Optical Manchester Code
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,人們對於光纖通訊網路的需求量漸漸愈來愈大了,因此為了使得傳輸速度加快,我們並不希望使用到任何的光電轉換,因為一旦牽扯到電的信號處理領域,資料的傳輸速度就不快了(在電的領域上傳輸資料最多可以達到幾百Mb/s,但是在進入光的領域內,傳輸資料可以達到幾十Gb/s),而全光互斥或邏輯閘在全光學信號處理中算是不可或缺的角色之ㄧ。在光纖通訊網路中使用非線性光纖來完成全光互斥或邏輯閘具有以下三個明顯的優點:(1)不需要再額外的元件去做光電轉換之後才去作邏輯運算處理,(2)在非線性光纖中具有超快的非線性響應時間(約2到4飛秒等級),(3)與整個傳輸系統中的光纖具有良好的相容性。這些許多的優點使得利用非線性光纖所兜出來的元件模組在現今許多不同的研究團隊中漸漸給予高度密切的注意並肯定其潛力所在。在本篇論文中,我們嘗試著使用光信號在非線性光纖中的極化方向旋轉方法來完成全光互斥或邏輯閘運算。在本篇論文中最後的結果也證實此觀念想法在使用10Gb/s和20Gb/s的光信號也的確能完全符合互斥或邏輯閘運算理論上應當的結果。另外,我們試著去調整ㄧ些參數,包括輸入的光信號功率和波長的選取、所使用的非線性光纖之長度和其本身損耗值,進而去觀察這些參數的變化會對於全光互斥或邏輯閘運算的表現會有所如何的影響。經過本篇論文的研究結果顯示,這些參數的選取的的確確扮演影響全光互斥或邏輯閘運算的表現的重要角色。當輸入光信號的功率和非線性光纖長度的分別選取在適當的值皆會使得全光互斥或邏輯閘得到其最大的輸出功率來。除此之外,研究結果亦顯示出當兩個輸入光信號的波長選取差距愈遠的話,會影響到全光互斥或邏輯閘最後所得到的轉換光信號品質劣化愈嚴重,此現象在更高速的資料傳輸速度下更加明顯。這些研究所觀察的結果趨勢將有助於我們對於如何適當操作全光互斥或邏輯閘並且得到其較佳的轉換光信號表現,預期這些上述所完成的研究成果將會有助於下ㄧ世代光纖通訊系統的發展。


    In recent days, the demand for high speed photonic communication networks was much larger little by little. A key building block in many areas of optical signal processing is just the all-optical XOR logic gate. For the fiber-based reconfigurable high-speed optical network, an all-fiber solution for the XOR gate is highly desirable with the added advantages of (i) no need for OE/EO conversion, (ii) ultrafast nonlinear response time (~2-4 fs) of Kerr effect in the fiber, and (iii) excellent fiber compatibility. These advantages make highly nonlinear fiber devices to be attracting considerable attention in the aspects of many researches. In this thesis, we try to simulate to achieve all-optical XOR logic function by using polarization rotation in a single HNLF at 10 Gb/s and 20 Gb/s. Thus, we accomplished signal-processing in all-optical domain. Besides, we also try to tune some parameters, for example, the selections of the input power and wavelength of lasers and the length and fiber loss of the highly nonlinear fiber (HNLF), to investigate the influence on the performance of the all-optical XOR logic gate. The results of this research will reveal the fact that these parameters indeed play an important role in the performance of all-optical XOR logic gate by using polarization rotation in a single HNLF. As a result, we will understand how to use these appropriate parameters of all-optical XOR logic gate in order to get the better performance of it based on the concept of using a highly nonlinear fiber. These investigations and demonstrations will be useful expectedly in the field of high speed photonic communication networks for the next generation.

    CONTENTS Chinese Abstract…………………………………………………Ⅰ English Abstract…………………………………………………Ⅱ Acknowledgements…………………………………………………Ⅲ Contents……………………………………………………………Ⅳ List of Figures…………………………………………………Ⅴ List of Tables……………………………………………………Ⅵ CHAPTER 1 Introduction………………………………………………………1 1.1 Review of the comparison of electric logic and photonic logic………………………………………………2 1.2 Review of the methods to generate all-optical XOR logic operation……………………………………………6 1.3 The motivation of research………………………………9 1.4 The structure of the thesis……………………………9 CHAPTER 2 The Phenomena of Dispersion Effect and Nonlinear Effect in Optical Communication Systems……………………………10 2.1 Dispersive Effects in Optical Fiber Communication Systems………………………………………………………10 2.1.1 Chromatic Dispersion………………………………10 2.1.1.1 Pulse Walk-Off……………………………15 2.1.1.2 Pulse Broadening…………………………15 2.1.2 Polarization Mode Polarization (PMD)…………16 2.2 Fiber Nonlinearities……………………………………19 2.2.1 Nonlinear Refraction………………………………21 2.2.2 Nonlinear Phase Shift……………………………22 2.2.3 Self-Phase Modulation and Cross-Phase Modulation……………………………………………23 2.2.3.1 Self-Phase Modulation……………………23 2.2.3.2 Cross-Phase Modulation……………………25 2.2.4 Stimulated Scattering………………………………26 2.2.5 Four-Wave Mixing……………………………………27 CHAPTER 3 All-Optical XOR Gate Generation………………………………30 3.1 Optical Kerr Effect………………………………………30 3.2 The Nature of Polarized Light…………………………31 3.2.1 Linear Polarization…………………………………32 3.2.2 Circular Polarization………………………………34 3.2.3 Elliptical Polarization……………………………35 3.3 All-Optical XOR Gate Generation ………………………38 3.3.1 The Principle of All-Optical XOR Gate Generation……………………………………………38 3.3.2 Highly Nonlinear Fiber (HNLF)……………………40 3.3.3 The Simulation Setup of All-Optical XOR Gate Generation……………………………………………44 3.3.4 The Simulation Pattern Results of All-Optical XOR Gate Generation…………………………………48 3.3.5 The Efficiency of All-Optical XOR Gate Generation……………………………………………53 3.3.5.1 Input Pump Power V.S. Output Power……53 3.3.5.2 HNLF Length V.S. Output Power…………60 3.3.5.3 HNLF Fiber Loss V.S. Output Power……62 3.3.6 The Wavelength Selections of Lasers for All- Optical XOR Gate Generation………………………63 3.3.7 The BER Curve for All-Optical XOR Gate Generation……………………………………………72 CHAPTER 4 Summary for the Thesis…………………………………………74 4.1 Conclusion and discussion………………………………74 4.2 Suggestions for the future work………………………75 Appendix Characteristics of Optical Manchester Coding……………81 Reference……………………………………………………………84

    REFERENCE

    [1]. Fundamentals of Photonics, by Saleh and Teich, John
    Wiley & Sons, Inc.1991.

    [2]. Polina Bayvel, Michael Dueser and John E. Midwinter,
    “Switchingto light: all-optical data handling ”,
    Department of Electronic and Electrical Engineering
    University College London (UCL).

    [3]. Osamu Wada, “Femtosecond all-optical devices for
    ultrafast communication and signal processing”, New
    Journal of Physics 6 (2004) 183

    [4]. J. H. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo,
    and S. H. Kim,“All-optical half adder using
    semiconductor optical amplifier based devices,”Opt.
    Commun., vol. 218, pp. 345–349, 2003.

    [5]. A. J. Poustie, K. J. Blow, R. J. Manning, and A. E.
    Kelly, “All-optical pseudorandom number generator,”
    Opt. Commun., vol. 159, pp. 208–214, 1999.

    [6]. C. Bintjas, M. Kalyvas, G. Theophilopoulos, T.
    Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares,G.
    Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-
    optical XOR with UNI gate,” IEEE Photon. Technol.
    Lett., vol. 12, no. 7, pp. 834–836, Jul. 2000.

    [7]. B. S. Robinson, S. A. Hamilton, S. J. Savage, and E.
    P. Ippen, “40 Gbit/s all-optical XOR using a fiber-
    based folded ultrafast nonlinear interferometer,”in
    OFC 2002, 2002, pp. 561–563.

    [8]. T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A.
    Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M.
    Renaud, “Demonstration of 20 Gbit/s all-optical
    logic XOR in integrated SOA-based interferometric
    wavelength converter,” Electron. Lett., vol. 36, pp.
    1863–1864, 2000.

    [9]. R. P.Webb, R. J. Manning, G. D. Maxwell, and A. J.
    Poustie, “40 Gbit/s all-optical XOR gate based on
    hybrid-integrated Mach–Zehnder interferometer,”
    Electron. Lett., vol. 39, pp. 79–81, 2003.

    [10]. J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo,
    and S. H. Kim,“All-optical XOR gate using
    semiconductor optical amplifiers without additional
    input beam,” IEEE Photon. Technol. Lett., vol. 14,
    no. 10, pp. 1436–1438, Oct. 2002.

    [11]. H. Soto, D. Erasme, and G. Guekos, “5-Gb/s XOR
    optical gate based on cross-polarization modulation
    in semiconductor optical amplifiers,”IEEE Photon.
    Technol. Lett., vol. 13, no. 4, pp. 335–337, Apr.
    2001.

    [12]. Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A.
    B. Piccirilli, and N. K. Dutta, “Study of all-
    optcial XOR using Mach-Zehnder interferometer and
    differential scheme,” IEEE J. Quantum electron.,
    vol.40, pp.703-710,2004.

    [13]. G. Agrawal and N. Olsson, “Self-Phase modulation and
    spectral broadening of optical pulses in
    semiconductor laser amplifiers,” IEEE J. Quantum
    electron. 25-11, 2297-2306 (1989).

    [14]. H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B.
    Piccirilli, and N. K. Dutta, “All-optical logic XOR
    using a differential scheme and Mach-Zehnder
    interferometer,” Electron. Lett. 38, 1271-1273
    (2002).

    [15]. H. Sun, Q. Wang, H. Dong and N. K. Dutta, “XOR
    performance of a quantum dot semiconductor optical
    amplifier based Mach-Zehnder interferometer,” OPTICS
    EXPRESS. vol. 13, no. 6, 21 March 2005.

    [16]. C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. –S.
    Yan, A. W. Willner,“All-optical XOR gate using
    polarization rotation in single highly nonlinear
    fiber,” IEEE Photon. Technol. Lett. 17, 1232-1234
    (2005).

    [17]. G. P. Agrawal, Fiber-Optics Communication Systems,
    John Wiley & Sons, 1997.

    [18]. G.P. Agrawal, Nonlinear Fiber Optics, New York:
    Academic Press, 2001.

    [19]. D. Marcuse, Light Transmission Optics, Van Nostrand
    Reinhold, New York, 1982.

    [20]. I.P. Kaminow and T.L. Koch, Optical Fiber
    Telecommunication. III, Academic Press, 1997.
    [21]. Ajoy Ghatak and K. Thyagarajan, “Introduction to
    Fiber Optics”, Cambridge University Press, Appendix
    E, 1998.

    [22]. J. -X. Cai, M. Nissov, A. N. Pilipetskii, C. R.
    Davidson, R. –M. Mu, M. A. Mills, L.Xu, D. Foursa,
    R. Menges, P. C. Corbett, D. Sutton, and Neal S.
    Bergano, “1.28 Tbit/s (32 × 40 Gb/s) Transmission
    over 4,500 km”, 27th European Conference on Optical
    Communication (ECOC) 2001, Paper PD5, 2001.

    [23]. Tingye Li, “The Impact of optical amplifiers on long-
    distance light telecommunications”, Proceedings of
    the IEEE, vol. 81, pp. 1568-1579, 1993.

    [24]. Richart E. Slusher, Gadi Lenz, Juan Hodelin,
    Jasbinder Sanghera, L. Brandon Shaw, and Ishwar D.
    Aggarwal, “Large Raman gain and nonlinear phase
    shifts in high-purity As2Se3 chalcogenide fibers”,
    Journal of the Optical Society of America B,
    vol.21,no.6, pp.1146-1155, 2004

    [25]. C.D. Poole, “Statistical treatment of polarization
    dispersion in single-mode fiber” Opt. Lett. vol. 13,
    pp. 687-689, 1988.

    [26]. Y. Namihira, and H. Wakabayashi, “Fiber length
    dependence of polarization mode dispersion
    measurement in long-length optical fibers and
    installed optical submarine cables”, J. Opt. Commun.
    vol. 12, pp. 1-8, 1991.

    [27]. George I Stegeman and Roger H. Stolen, “Waveguides
    and fibers for nonlinear optics”, Journal of the
    Optical Society of America B, vol.6, no.4, pp.652-
    662, 1989.

    [28]. R. H. Stolen and Chinlon Lin, “Self-phase-modulation
    in silica optical fibers”, Physics Review A, vol.17,
    no.4, pp.1448-1453, 1978.

    [29]. D. Marcuse, A.R. Chraplyvy, and R.W. Tkach,
    “Dependence of cross-phase modulation on channel
    number in fiber WDM systems”, IEEE J. Lightwave
    Technol., vol. 12, pp 885-890, 1994.

    [30]. Changyuan Yu, “Dispersive and Nonlinear Effects in
    High Speed Reconfigurable WDM Optical Fiber
    Communication Systems”, Ph.D. thesis,
    University of Southern California, California, August
    2005.

    [31]. Andrew R. Chraplyvy, “Limitations on Lightwave
    Communications Imposed by Optical Fiber
    Nonlinearities”, Journal of Lightwave Technology,
    vol.8, no.10, pp.1548-1557, 1990.

    [32]. Optics, 4th Ed., by Hecht, Addison Wesley, 1999.

    [33]. Z. Pan, Q. Yu, Y. Arieli, A. E. Willner, “The effect
    of XPM-Induced fast polarization-state fluctuations
    on PMD compensated WDM systems,” IEEE Photon.
    Technol. Lett. 16, 1963-1965 (2004).

    [34]. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-
    Blanch, W. J. Wadsworth, and P. St. J. Russell,
    “Anomalous Dispersion in Photonic Crystal Fiber”,
    IEEE Photonics Technology Letters, vol.12, no.7,
    pp.807-809, 2000.

    [35]. M. E. Lines, “Oxide glasses for fast photonic
    switching: A Comparative Study”, Journal of Applied
    Physics, vol.69, no.10, pp.6876-6884, 1991.

    [36]. Stephen R. Friberg and Peter W. Smith, “Nonlinear
    Optical Glasses for Ultrafast Optical Switches”,
    IEEE Journal of Quantum Electronics, vol.23, no.12,
    pp.2089-2094, 1987.

    [37]. Jong-Kook Kim, ”Investigation of High-Nonlinearty
    Glass Fibers for Potential Applications in Ultrafast
    Nonlinear Fiber Devices”, Ph. D. thesis, Virginia
    Polytechnic Institute and State University,
    Blacksburg, Virginia, July 28, 2005.

    [38]. Yong-Won Song, Kien T. Dinh, Shinji Yamashita,
    “Generation of all-fiber optical Manchester code
    using nonlinear polarization rotation,” OPTICS
    EXPRESS. vol. 14, no. 1, January 9, 2006.

    [39]. Semiconductor Optical Amplifier, by Michael J.
    Connelly, Kluwer Academic Publisher, Boston, 2002.

    [40]. Hideki Nishizawa, Member, IEEE, Yoshiaki Yamada,
    Member, IEEE, Keishi Habara, Member, IEEE, and
    Takaharu Ohyama, “Design of a 10-Gb/s Burst-Mode
    Optical Packet Receiver Module and Its Demodulation
    in a WDM Optical Switching Network”, Journal of
    Lightwave Technology, vol. 20, no. 7, pp.1078-1083,
    July 2002.

    [41]. T. V. Muoi, “Receiver design for digital fiber optic
    transmission systems using Manchester (biphase)
    coding,” IEEE Trans. Commun., vol. COM-31, pp. 608–
    619, 1983.

    [42]. Yasuo Shibata, Yoshiaki Yamada, Member, IEEE, Keishi
    Habara, Member, IEEE, and Naoto Yoshimoto, Member,
    IEEE, “Semiconductor Laser Diode Optical
    Amplifiers/Gates in Photonic Packet Switching”,
    Journal of Lightwave Technology, vol. 16, no. 12,
    pp.2228-2235, December 1998.

    [43]. K. Murata, T. Otsuji, T. Enoki, and Y. Umeda,
    “Exclusive OR/NOR IC for >40 Gbit/s optical
    transmission systems”, Electron. Lett., vol. 34, pp.
    764–765, 1998.

    [44]. Iwao Sasase, “Optical Code Division Multiple
    Access”, Dept. of Information and Computer Science,
    Keio University 3-14-1, Hiyoshi, Kohoku-ku, Yokohama
    223-8522, Japan sasase@ics.keio.ac.jp

    [45]. M. Sathish Kumar, K. N. Hari Bhat, G. Umesh, V. S.
    Veena Devi, B. Shahir, “Rate 1/2 Error Control
    Coding in Asynchronous Optical CDMA Networks Without
    Penalizing Bandwidth Efficiency”, Joural of Optical
    Communications 25 (2004) 822.

    [46]. T. V. Muoi, “Receiver Design for Digital Fiber Optic
    Transmission Systems Using Manchester (Biphase)
    Coding”, IEEE Transcations on Communications, vol.
    COM-31, no. 5, pp.608-619, May 1983.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE