簡易檢索 / 詳目顯示

研究生: 施彥豪
Shih, Yan-Hao
論文名稱: 平移式滾子從動件圓柱形凸輪之設計與分析
The Design and Analysis of Cylindrical Cam with Translating Follower
指導教授: 吳隆庸
Wu, Long-Iong
口試委員: 雷衛台
Lei, Wei-Tai
蔡錫錚
Tsai, Shyi-Jeng
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 88
中文關鍵詞: 共軛曲面空間凸輪圓柱形凸輪
外文關鍵詞: conjugate surface, spatial cam, cylindrical cam
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相較於盤形凸輪,圓柱形凸輪具有能改變空間中運動傳遞方向的優點,因此圓柱形凸輪非常適用於非平行輸入/輸出軸間的運動轉換。由於圓柱形凸輪輪廓與從動件輪廓可視為一組相互嚙合的共軛齒型,因此本文利用由Litvin所提出的共軛曲面法來計算圓柱形凸輪輪廓,並藉由微分幾何之理論來探討凸輪輪廓的曲面特性。
      首先,本研究利用共軛曲面法求得每一瞬間圓柱形凸輪和滾子從動件的接觸線段,而所有接觸線段所形成的直紋曲面即為圓柱形凸輪的輪廓面。本研究結果發現離凸輪旋轉中心軸越近之接觸點的壓力角越大,而過大的壓力角不利於圓柱形凸輪將力量傳遞至從動件。因此,圓柱形凸輪之內徑不宜過小。另外,本文亦提及兩種加工刀具相對於圓柱形凸輪之配置,兩種刀具配置皆會造成輪廓誤差,適當地選擇加工方式將有助於同時滿足精度與成本的考量。此外,此研究同時分析輪廓曲面之曲率並檢測過切現象,並且探討各個設計參數對過切現象的影響。最後,本文利用赫茲接觸應力理論分析接觸點之最大接觸應力,以及計算圓柱形凸輪之輸入扭矩。
    根據本研究結果發現,在空間容許的考量下,應盡可能設計較大尺寸的圓柱形凸輪,否則小尺寸的凸輪將對加工誤差、力量的傳遞、過大的接觸應力以及過切現象等皆有不良的影響。本文中所提及的設計與分析圓柱形凸輪機構之理論可適用於其他的空間凸輪機構。


    Compared with disc-cam mechanisms, cylindrical cam mechanisms have the advantage of shifting the direction of spatial motion transmission. Hence, cylindrical cam mechanisms is quite adequate for realizing the input-output transmission of two non-parallel joint axes. Since the surface of cylindrical cam and that of follower can be regarded as a set of conjugate gear tooth profiles, this research employs the theory of conjugate surface proposed by Litvin for calculating the cylindrical cam profile and apply theory of differential geometry for investigating the characteristics of cam profile.

    First, this research applies theory of conjugate surface for locating the contact line between the cylindrical cam and the follower at every instant. These contact lines in space form a ruled surface which is the cylindrical cam profile. The research indicates that the pressure angle is larger for the contact points closer to the axis of cam rotation. The force transmission may deteriorate sharply due to larger pressure angles. Therefore, it is recommended to avoid designing the cylindrical cam with smaller inner diameter. In addition, this work addresses two arrangements of the cutting tool for manufacturing cylindrical cams. Both of two arrangements of the cutting tool may result in the deviation of the cam profile at a certain level. Appropriately choosing the way of manufacture may help meet the trade-off between precision and cost. Moreover, the curvature of surface of cylindrical cam profile is analyzed for detecting the undercutting phenomenon. The impacts of design parameters on the undercutting phenomenon are included in this work as well. Finally, we adopt the contact stress theory developed by Hertz for analyzing the maximum contact stress of contact points and calculate the input torque used for driving cylindrical cam mechanisms.

    In conclusion, the inner diameters of cylindrical cams, subjected to available space, should be designed as larger as possible. Otherwise, a smaller cam size may lead to considerable deviations of cam profile, inefficient force transmission, larger contact stress and undesired undercutting. The present method for designing and analyzing cylindrical cams mechanisms can be comprehensively applicable to other types of spatial cam mechanisms as well.

    第一章 前言 1 1-1 概述 1 1-2 文獻回顧 2 1-3 研究動機與目的 3 第二章 以解析法求解圓柱形凸輪外形 4 2-2 基本理論 5 2-2-1 座標轉換 5 2-2-2 共軛曲面的嚙合方程式 8 2-2-3 共軛曲面的參數方程式 10 2-3 圓柱形凸輪外形的建立 12 第三章 圓柱形凸輪的壓力角及與圓柱滾子的接觸狀態 19 3-1 壓力角與接觸位置之關係 19 3-1-2 影響壓力角大小的因素 22 3-2 圓柱形凸輪與滾子的接觸狀態 23 第四章 圓柱形凸輪的製造誤差 26 4-1 凸輪的製造及其製造誤差所造成的影響 26 4-2 沿從動件移動方向上設定磨輪位置及其誤差 27 4-3 於接觸點法線方向上設定磨輪位置及其誤差 38 4-4 兩種磨輪位置設定方式所造成的輪廓誤差之比較 44 4-5 加工誤差和磨輪及滾子半徑差異之關係 45 第五章 輪廓面之曲率及過切分析 48 5-1 空間曲面之主曲率 48 5-1-1 圓柱形凸輪輪廓面之主曲率 51 5-1-2 圓柱形凸輪輪廓面之高斯曲率 55 5-2 共軛曲面發生過切之條件 57 第六章 圓柱形凸輪之受力及應力分析 64 6-1 接觸點之受力及凸輪輸入扭矩分析 64 6-1-1 接觸點受力分析 65 6-1-2 圓柱形凸輪輸入扭矩分析 71 6-2 接觸點之應力分析 77 第七章 結論 80 參考文獻 82 附錄A 擺線運動曲線 84 附錄B 相對法曲率 86

    [1] Chen, F.A.,Mechanics and Design of Cam Mechanisms, Pergamon, New York, 1982.
    [2] Kim, H. R.,and Newcombe, W. R., “The Effect of Cam Profile Errors and System Flexibility on Cam Mechanism Output,” Mechanism and Machine Theory, Vol. 17, No. 1, 1982, pp. 52-72.
    [3] Johnson, R. C., “How Profile Errors Affect Cam Dynamics, ” Machine Design, Feb. 7, 1957, pp. 105-108
    [4] Wilson, C. E., Sadler, J. P., and Michels, W. J., Kinematics and Dynamics of Machinery, Harper & Row, New York, 1983.
    [5] Mabie, H. H., and Reinholtz, C. F., Mechanisms and Dynamics of Machinery, Fourth Edition, John Wiley and Sons, New York, 1987.
    [6] Carver, W. B., and Quinn, B. E., ”An Analytical Method of Cam Design,” Mechanical Engineering, Vol. 67, 1945, pp. 523-526
    [7] Roger, S. H., ”New Cam Design Equation,” Product Engineering, August 1962, pp. 45-55.
    [8] Gal-Tzur, Z., Shpitalni, M., and Malkin, S., ”Integrated CAD/CAM System for Cams,” Annals of the CIRP, Vol. 35, No.1, 1986, pp.99-102.”
    [9] Lin, A. C., Chang, H., and Wang, H. P., ”Computerized Design and Manufacturing of Plane Cams,” International Journal of Production Research, Vol. 26, No. 8, 1988, pp. 1395-1430.
    [10] Paparoannou, S. G., ”Computer-Aided Manufacture of High Precision Cams,” Journal of Engineering for Industry, Vol. 110, Now. 1988, pp. 352-358.
    [11] Gal-Tzur, Z., and Shpitalni, M., “Design and Manufacturing Analytical for Integrated CAD/CAM of Cams,” Journal of Engineering for Industry, Vol. 111, Nov. 1989, pp. 307-314.
    [12] Raven, F. H., “Analytical Design of Disk Cams and Three-Dimensional Cams by Independent Position Equations,” Journal of Applied Mechanic, Vol. 81, March 1959, pp. 18-24.
    [13] Dhande, S. G., and Chakraborty, J., ”Curvature Analytical of Surface in Higher Pair Contact, Part I : An analytical Investigation,” Journal of Engineering for Industry, Vol. 98, No. 2, May 1976, pp. 397-402.
    [14] Dhandle, S. G., and Chakrabory, J., ” Curvature Analytical of Surface in Higher Pair Contact, Part II : Application to Spatial Cam Mechanisms,” Journal of Engineering for Industry, Vol. 98, No. 2, May 1976, pp. 403-409.
    [15] Litvin, F. L., Gear Geometry and Applied Theory, Cambridge University Press, 2004.
    [16] Dhande, S. G., Bhadoria, B. S., and Chakraborty, J., “A Unified Approach to the Analytical Design of Three-Dimensional Cam Mechanisms,” Journal of Engineering for Industry, Feb. 1975, pp.327-333.
    [17] Dhande, S. G., Bhadoria, B. S., and Chakraborty, J., Kinematic and Geometry of Planar and Spatial Cam Mechanisms, John Wiley and Sons, 1977.
    [18] Tsay, C. B., ”An analytical Method for Synthesis of Cam Profiles,” Journal of CSME, Vol. 8, No.4, 1987, pp. 271-276.
    [19] Meneghetti, U., and Andririsano, A. O., ”On the Geometry of Cylindrical Cams,” Proceedings of the Fifth World Congress on Theory of Machines and Mechanisms, 1977, pp. 595-598.
    [20] Jensen, P. W., “Minimum Cam Size,” Product Engineering, March 1964, pp. 69-76.
    [21] Rothbart, H. A., Cams, John Wiley and Sons, New York, 1956.
    [22] Willmore, T, J., “An Introduction to Differential Geometry,” Oxford University Press, 1959, pp. 95-116.
    [23] Rober C Juvinall, Kurt M. Marshek, Mcahine Component Design, John Wiley & Sons, New York, p. 393
    [24] 陳志蓬,1992,刀徑變異對圓柱型凸輪製造誤差之影響,碩士論文,國立清華大學動力機械工程學系,新竹市。
    [25] 李昱正,1995,擺動滾子從動件圓柱凸輪之設計與分析,碩士論文,國立清華大學動力機械工程學系,新竹市。
    [26] 康耀鴻,1995,具直紋迴轉面嚙合件變導程螺桿之曲率研究,博士論文,國立成功大學機械工程學系,台南市。
    [27] 劉昌棋(中)、牧野洋(日)、曹西京(中),2005,凸輪機構設計,機械工業出版社,北京市。
    [28] 顏鴻森,吳隆庸,2006,機構學,臺灣東華書局股份有限公司,296-299頁。

    QR CODE