簡易檢索 / 詳目顯示

研究生: 黃玉廷
Huang, Yu-Ting
論文名稱: 有機無機複合金屬磷酸鹽材料之綠色合成與功能性研究
Green Syntheses and Functionalities of Organic-Inorganic Hybrid Metal Phosphates
指導教授: 王素蘭
Wang, Sue-Lein
口試委員: 李光華
Lii, Kwang-Hwa
陳登銘
Cheng, Teng-Ming
黃暄益
Huang, Hsuan-Yi
鄭建鴻
Cheng, Chien-Hong
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 376
中文關鍵詞: 金屬磷酸鹽綠色合成餘暉發光層狀材料寶特瓶回收超分子組裝
外文關鍵詞: Metal phoshphate, Green Syntheses, Afterglow, Layer materials, PET Bottle Recycle, Supramolecular Assembly
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用有機胺為模板,在中溫中壓水熱反應中得到18個化合物,分屬三個不同的系統。系統A 著重於縮短能源與廢棄物再生的議題,以微波代替傳統加熱方式,將合成時間縮短至原有的1%即能成功得到產物-A1、A2與A3的單相;並發現扮演配基的對苯二甲酸在”看似”相同的結構中,可作不同程度的轉動。此結果顯示微波方式所得到的產物其實與傳統加熱法結果並非全然相等, 顛覆了已往使用微波合成作為已知相量產的認知;另一方面我們成功將寶特瓶(PET)的碎片當作起始反應試劑,運用於兩個極具效率的反應得到了新穎結構A5與A6,後者擁有有趣的光致發光性質,可成為螢光粉材料應用於白光LED,為回收廢棄保特瓶的利用提供一嶄新的視野。
    系統B含有六個含有機超分子的層狀鋅磷酸鹽,獨特而有彈性的擬中性層(H3tren)2[Zn3(PO4)4]上具有錯綜的氫鍵分佈,控制著非掌性單體客分子在層間形成掌性超分子無限鏈,導引出B1-B4掌性結構;擬中性層間距也隨不同客分子大小擴張,最高可至20 Å;層上的鋅可以部分用過渡金屬取代,不僅發現摻雜鈷金屬的層可導致有機酸分子客體在層間形成兩種不同排列的超分子鏈 (B4與B4a)、摻雜錳金屬後可導致光致發光性質,由有機酸超分子客體扮演光敏化劑的角色而帶來高亮度的橘色(B1-Mn)或粉紅色 (B4-Mn)螢光。
    系統C為運用仿生材料中重要的bola界面活性劑的長碳鏈有機胺DADD為模板,並加入有機酸大分子BPDA與磷酸鹽所建構出的六個層狀化合物,其中一個鎵磷酸鹽C3不僅具有22 Å超大層間距,還展現罕見的餘輝發光性質。
    在此三個研究系統中,我們藉由單晶X光繞射方法,瞭解各個新物質詳細的結構,從結構的觀點探討合成、熱穩定性質、有機超分子的自組裝與各種光致發光機制,在有機/無機複合金屬磷酸鹽領域提供多項重要的創新觀點與突破。


    In this research, 18 compounds were synthesized by employing organic amine as template under hydrothermal conditions. They were classified into three systems:
    System A put emphasis on reduction of energy consumption and chemical recycling of waste PET. Reactions with the use of microwave as an energy source largely cut down the reaction time to 1% as compared to conventional heating time and successfully yielded three single-phased products of A1, A2 and A3. The compounds A2,A3 and A5 displayed 3D structures “seemingly the same “ but they are not exactly identical due to the common organic linkers of BDC moiety adopting different orientations with respect to the same inorganic framework. The results should overturn our conventional cognition on scaling up product by microwave synthesis. On the other hand, scraps of waste PET bottle were successfully employed in two reactions as potent reagents to produce new compound A5 and high-valued phosphor materials A6 with potential application to white-light LEDs, providing a brand new perspective to chemical recovery of waste PET.
    System B contains six layered zinc phosphates encapsulating organic supra molecules as guest species. Bearing intricate hydrogen-bonding patterns within each layer, the pseudo-neutral (H3tren)2[Zn3(PO4)4] sheets are highly adaptable to varied achiral organic monomers, making them transformed into different chiral supramolecular chains. As a result, the entire structures of B1-B4 were turned into chiral as well. Depending on the molecular size of guest monomers, the layer gap was able to pop up the most to 2.01 nm (B4). Furthermore, the zinc center could be doped with homo-valence transition metal ions. Incorporation of Co2+ ions into layers exerted strong influence on supramolecular guests’ arrangements while doping of Mn2+ ions created novel photoluminescence property-the inter-layer supramolecular guest became a good sensitizer for the emission of bright orange- (from B1-Mn) or pink- (from B4-Mn) light under UV excitation.
    System C involved the use of bola-type surfactant, the long chain amine-DADD, as organic template. In the synthesis additional bulky organic acid-BPDA was included together with (metal) phosphate to generate six layered materials. The compound of C3 is highly interesting as it not only was observed ultra-large inter layer gap of 2.2nm but also revealed intriguing green afterglow property.
    In the three systems, every structure was well-characterized and extended to the discussion on their syntheses, thermal properties, self-assembly of supramolecular guests and the mechanisms of luminescence. The study generated significant results with substantial novelty and made conceptual breakthroughs to the field of organic/inorganic hybrid metal phosphate materials.

    目錄 第一章 序論 1-1簡介 1-1 1-2 論文研究目標 1-7 1-3 合成方法 1-9 1-4 鑑定方法 1-16 1-5 研究成果摘要 1-32 1-6 參考文獻 1-36 第二章 奈米孔洞鋅磷酸鹽之綠色合成與性質研究 2-1 簡介 2-1 2-2實驗合成方法 2-8 2-3化合物鑑定 2-11 2-3-1 晶體結構的SXRD解析 2-3-2粉末繞射分析 2-14 2-3-3元素分析 2-14 2-3-4熱分析 2-14 2-4 結果與討論 2-18 2-4-1 合成討論 2-4-2 結構關聯性 2-27 2-4-3氣體吸附性質與測量 2-35 2-4-4光致發光特性 2-41 2-5 結論 2-51 2-6 參考文獻 2-53 第三章 有機酸於彈性層狀鋅磷酸鹽中自組裝形成的掌性有機超分子鏈 3-1 簡介 3-1 3-2實驗合成方法 3-6 3-3化合物鑑定 3-12 3-3-1晶體結構解析 3-3-2粉末繞射分析 3-23 3-3-3元素分析 3-23 3-3-4熱分析 3-24 3-3-5非線性光學性質 3-30 3-3-6磁性SQUID分析 3-31 3-4 結果與討論 3-33 3-4-1 結構特性討論 3-4-2 熱穩定性質 3-47 3-4-3 有機超分子酸影響的光致發光現象 3-49 3-5 結論 3-54 3-6 參考文獻 3-57 第四章 長碳鏈有機胺-芳香酸共模板的層狀金屬磷酸鹽之結構與餘暉發光性質 4-1 簡介 4-1 4-2實驗合成方法 4-5 4-3化合物鑑定 4-8 4-3-1晶體結構解析 4-8 4-3-2粉末繞射分析 4-13 4-3-3元素分析 4-13 4-3-4熱分析 4-14 4-4 結果與討論 4-18 4-4-1 合成討論 4-18 4-4-2 晶體結構描述與比較 4-21 4-4-3光致發光現象 4-52 4-5 結論 4-70 4-6 參考文獻 4-72 第五章 總結 5-1 附錄一. A-C系列晶體數據列表 附錄二.化合物之粉末X光繞射圖譜 附錄三. 研究所期間發表的論文

    1. (a) Breck, D. W. Zeolite Molecular Sieves: Structure,
    Chemistry and Use, J. Wiley and Sons, New York, 1974;
    (b) Venuto, P. B. Microporous Mater., 1994, 2, 297.(c)
    Corma, A. Chem. Rev., 1995, 95, 559.
    2. Barrer, R. M.; Denny, P. J. J. Chem. Soc.1961, 971.
    3. Wagner, P.; Yoshikawa, M.; Lovallo, M.; Tsuji, K.;
    Taspatsis, M.; Davis, M. E. Chem. Comm. 1997, 2179.
    4. Freyhardt, C. C.; Khodabandeh, S.; Wagner, P.; Chen, C.
    Y.; Balkus, K. J.; Zones, S. I.; Davis, M. E. J. Am.
    Chem. Soc. 1997, 119, 8474.
    5. Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T.
    R.; Flanigen, E. M. J. Am. Chem. Soc. 1982, 104, 1146.
    6. Jones, R. H.; Thomas, J. M.; Chen, J.; Xu. R.; Huo, Q.;
    Li, S.; Ma, Z.; Chippindale,A. M. J. Solid Sate Chem.
    1993, 102, 204.
    7. Davis, M. E.; Saldarriaga, C.; Montes, C.; Garces, J.
    M.; Crowder, C. Nature 1988,331, 698.
    8. Soghomonian, V.; Chen, Q.; Haushalter, R. C.; Zubieta,
    J.; O’Connor, J. Science, 1993, 259, 1596.
    9. (a) Gier, T. E.; Stucky, G. D. Nature 1991, 349, 508.(b)
    Feng, P.; Bu, X.; Stucky, G. D. Angew. Chem., Int. Ed.
    1995, 34,1745.(c) Wang, Y.; Yu, J.; Guo, M.; Xu, R.
    Angew. Chem., Int. Ed. 2003, 42, 4089.
    10.(a) Kierkegaard, P.; Westerlund, M. Acta Chem. Scand.,
    1964, 18, 2217; (b)Costentin, G.; Laclaire, A.; Borel,
    M. M.; Grandin, A.; Raveau, B. Rev. Inorg.Chem., 1993,
    13, 77.
    11.(a) Cleitzer, C. Eur. J. Solid State Inorg.Chem.1991,
    28, 77(b) Lii, K. W. J. Chem. Soc., Dalton Trans., 1996,
    819.(c) Fe´rey, G. J. Fluorine Chem., 1995, 72, 187.
    12.(a) Parise, J. B. Inorg. Chem. 1985, 24, 4312.(b)
    Guangdi, Y.;Shouhua, F.; Ruren, X. J. Chem. Soc., Chem.
    Commun. 1987,1254.1-38
    13. Dhingra, S. S.; Haushalter, R. C. J. Chem. Soc.Chem.
    Commun.1993, 1665.
    14. Maspoch, D.; Ruiz-Molina, Daniel.; Veciana, J. Chem.
    Soc. Rev.,2007, 36,770–818.
    15. Jhang, P. C.; Yang, Y. C.; Lai, Y. C.; Liu, W. R.;
    Wang, S. L. Angew. Chem. Int. Ed. 2009, 48, 742-745.
    16. Ferna´ndez, S.; Mesa, J. L.; Pizarro, J. L.; Lezama,
    L.; Arriortua, M. I.; Olazcuaga, R.; Rojo, T. Chem.
    Mater., 2000, 12, 2092.
    17. (a)Neeraj, S.; Forster, P. M.; Rao, C. N. R.; Cheetham,
    A. K. Chem.Commun. 2001, 2716.
    18. Rao, C. N. R.; Natarajan, S.; Neeraj, S. J. Am. Chem.
    Soc. 2000,122, 2810.
    19. Lai,Y. L.; Lii, K.H.; Wang, S. L. J. Am. Chem. Soc.,
    2007, 129 , 5350–5351.
    20. Lin, C.H.; Wang, S. L. Lii, K.H. J. Am. Chem. Soc.,
    2001, 123,4649–4650.
    21. An, H.Y.; Wang, E.B.; Xiao, D. R.; Li,Y. G.; Su, Z. M.;
    Xu, L. Angew. Chem. Int. Ed. 2006, 45, 904.
    22. (a) Norquist, A. J.; O'Hare, D. J. Am. Chem. Soc.,
    2004, 126, 6673–6679 (b) Francis, R. J.; O'Hare, D. J.
    Chem. Soc., Dalton Trans.,1998,3133-3148.(c) Francis,
    R. J.; O'Brien, S.; Fogg, A. M.; Halasyamani, P. S.;
    O'Hare, D.; Loiseau, T.; Férey, G. J. Am. Chem. Soc.,
    1999, 121, 1002–1015.(d) Walton, R.I.; Loiseau, T.;
    O'Hare, D.; Férey, G. Chem. Mater., 1999, 11, 3201–
    3209.
    23. Li, J.; Li, L.; Liang, J.; Chen, P.; Yu, J.; Xu,Y.; Xu,
    R. Cryst. Growth Des., 2008, 8 , 2318–2323.
    24. (a)Rabenau, R. Angew. Chem., Int. Ed. 1985, 24, 1026.
    (b) Landise, R. A. Chem.Eng. News 1987, (Sept 28), 30.
    25. Cann, M.C.;Leadbeater, N.E. Microwave Heating as a Tool
    for Sustainable Chemistry. Taylor&Francis Group, Boca
    Raton.
    26. 王素蘭,科儀新知,民國九十四年二月第二十六卷第四期
    27. APEX II software package; Bruker AXS, Madison, WI, 2005.
    28. Sheldrick, G. M. SHELXTL programs, Release Version 5.1;
    Bruker AXS, Madison, WI, 1998.1-39
    29. Brown, I. D.; Altermann, D. Acta Crystallogr. 1985,
    B41, 244.
    30. Spek, L. Acta Crystallogr. 1990, A46, 34.
    31. Alcock, N. W., Bonding and Structure; Ellis Horwood:
    New York, 1990.
    32. Brown, I. D.; Altermann, D. Acta Crystallogr. 1985,
    B41, 244.
    33. de Mello, J. C.; Wittmann, H. F.; Friend, R. H. Adv.
    Mater. 1997, 9, 230.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE