研究生: |
廖珮芸 Pei-Yun Liao |
---|---|
論文名稱: |
鋰離子電池正極材料LiNi0.75-x-yMgyCo0.25MnxO2的相轉換、價數變化與電化學特性 Phase Transition, Oxidation State and Electrochemical Characterization of LiNi0.75-x-yMgyCo0.25MnxO2 Cathode Materials for Li-ion Batteries |
指導教授: |
杜正恭
Jenq-Gong Duh |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 159 |
中文關鍵詞: | 鋰電池 、結構變化 、正極材料 、吸收圖譜 |
外文關鍵詞: | Li-ion battery, structural transition, cathode, XAFS |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
LiNiO2 is one of the most attractive materials with the lower cost and higher discharge capacity to replace commercial LiCoO2 cathode material for Li-ion batteries. Nevertheless, due to the undesired capacity fading upon cycling and lower thermal and structural stability, transition metals, such as cobalt and manganese, are substituted for nickel to improve the properties LiNi0.75-xCo0.25MnxO2 materials. In this study, the structural changes for LiNi0.75-xCo0.25MnxO2 (x =0.1, 0.15 and 0.25) were investigated by synchrotron based in situ X-ray technique, along with the electrochemical measurements.
In situ XRD data of LiNi0.65Co0.25Mn0.1O2 upon charge showed that there were two hexagonal phases, H1 and H2, which could be recognized by tracking the changes of (003) peak. The lattice parameter “c” of new H2 phase was larger than that of original H1 phase, while the parameters “a” and “b” of H2 were smaller than those of H1. In fact, the phase boundary of H1 and H2 was smeared in LiNi0.6Co0.25Mn0.15O2 and LiNi0.5Co0.25Mn0.25O2, and a single-phase reaction was observed. The difference in phase transition was attributed to more degree of defects induced by the increase in Mn content. In addition, the changes of lattice parameters could be explained by the balance between ionic radius and the repulsive force of the layer-structured material.
The X-ray absorption near edge structure (XANES) indicated the initial valences in Li1-xNi0.5Co0.25Mn0.25O2 were +2/+3, +3 and +4 for Ni, Co, and Mn, respectively. The main redox reaction during delithiation was achieved by Ni (i.e. Ni2+□Ni3+ followed by Ni3+ □Ni4+). The oxidation states of Co and Mn remained Co3+ and Mn4+, respectively. The bond length of Ni-O decreased drastically, while the Co-O and Mn-O distances exhibited a slight change with the decrease of Li content in the electrode. It was further revealed all the second shell metal-metal (Ni-M, Co-M, and Mn-O) distances decreased due to the oxidation of metal ions.
For further improving the electrochemical performance and thermal stability, magnesium was chosen as dopant in Li[Ni0.6-yMgyCo0.25Mn0.15]O2 cathode materials. LiNi0.6-yMgyCo0.25Mn0.15O2 (y =0~0.08) were successfully synthesized via the mixing hydroxide method. These materials exhibited □-NaFeO2 structure as indicated by the XRD patterns. The intensity ratio of (003) to (104) showed that Mg substitution could reduce the cation mixing. The electrochemical performance, such as capacity retention, was also improved in both room temperature and 55 oC. The initial capacity of LiNi0.57Mg0.03Co0.25Mn0.15O2 was 214 mAh/g and had an excellent cyclic performance with only 7% capacity loss after 30 cycles. A combination of in situ synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) was used to study the phase transition and local environment change for LiNi0.57Mg0.03Co0.25Mn0.25O2 material charged to 5.2 V. In situ synchrotron X-ray diffraction patterns showed that the boundary of phase transition for H1 to H2 was more distinct in Mg-doped sample, indicating that the LiNi0.57Mg0.03Co0.25Mn0.15O2 material exhibited higher structural integrity. The improvements of both electrochemical retention and thermal stability were possibly attributed to the reduced cation mixing and complete structural changes. The high energy synchrotron XAS results showed that the main redox reaction during delithiation was achieved by Ni (i.e. Ni3+ □Ni4+), while the oxidation states of Co and Mn remained Co3+ and Mn4+ even charged to 5.2 V.
1. C. Delmas, M. Ménétrier, L. Croguennec, I. Saadoune, A. Rougier, C. Pouillerie, G. Prado, M. Grüne, and L. Fournès, Electrochimica Acta, 45 (1999) 243.
2. R. Koksbang, J. Barker, H. Shi, and M. Y. Saidi, Solid State Ionics, 84 (1996) 1.
3. J. M. Tarascon and D. Guymard, Electrochimica Acta, 9 (1993) 1221.
4. T. Ohzuku, and Y. Makimura, Chem. Lett., 2001, 642.
5. M. Yoshio, H. Noguchi, J. Itoh, M. Okada and T. Mouri, J. Power Sources, 90 (2000) 176.
6. Y. Sun, C. Ouyang, Z. Wang, X. Huang and L. Chen, J. Electrochem. Soc., 161 (2004) A504.
7. B. J. Hwang, Y. W. Tsai, C. H. Chen and R. Santhanam, J. Mater. Chem., 13 (2003) 1962.
8. P. Y. Liao, J. G. Duh, and S. R. Sheen, J. Electrochem. Soc., 152 (2005) A1695.
9. P. Y. Liao, J. G. Duh, and S. R. Sheen, J. Power Source, 143 (2005) 212.
10. J.-M. Tarascon and M. Armand, Nature, 414 (2001) 359.
11. Sony Corporation, US 18650G3, Sony Data Sheets for Lithium Ion Battery, 2000, 14.
12. Y. Nishi, J. Power Sources, 100 (2001) 101.
13. S. S. Zhang (Eds.), Advanced Materials and Methods for Lithium-ion Batteries 2007, first ed., Transworld Research Network, India, 2007, pp. 1-20.
14. J. Hajek, French Patent, 8 (1949) 10.
15. M. S. Whittingham, J. Electrochem. Soc., 122 (1975) 526.
16. K. A. Klinedinst, U. S. Patent No. 4,176,214 (1979).
17. A. A. Schneider, U. S. Patent No. 4,010,043 (1972).
18. M. S. Whittingham, Science, 192 (1976) 1126.
19. T. Ohzuku and R. J. Brodd, J. Power Sources, 174 (2007) 449.
20. M. S. Whittingham, Chem. Rev., 104 (2004) 4271.
21. B. M. L. Rao, R. W. Francis and H. A. Christopher, J. Electrochem. Soc., 124 (1977) 1490.
22. K. Mizushuma, P.C. Jones, P. J. Wiseman and J. B. Goodenough, Mat. Res. Bull. 15 (1980) 783.
23. M. M. Thackeray, W. I. F. David, P.G. Bruce and J. B. Goodenough, Mat. Res. Bull. 18 (1983), 461.
24. M. Lazzari and B. Scrosati, J. Electrochem. Soc. 127 (1980) 773.
25. B. Di Pietro, M. Patriarca, and B. Scrosati, J. Power Sources, 8 (1982) 289.
26. J.L. Tirado, Mater. Sci. Eng. R, 40 (2003) 103.
27. R. Yazami, P. Touzain, J. Power Sources, 9 (1983) 365.
28. T. Nagaura, Prog. Batteries Solar Cells 10 (1991) 209.
29. K. Ozaea, Solid State Ionics 69 (1994) 212.
30. 吴宇平,戴晓兵,马军旗,程预江, 锂离子电池- 应用与实践, 化学工业出版社, 北京,2004.
31. P.G. Bruce, Chem. Comm., 19 (1997) 1817.
32. F.F.C. Bazito and R.M. Torresi, J. Braz. Chem. Soc., 17 (2006) 627.
33. H. Yoshizawa and T. Ohzuku, Abstract #467 IMLB2006, Biarritz, France, June, 2006.
34. M. K. Aydinol, A. F. Kohan, and G. Ceder, K. Cho and J. Joannopoulos, Phys. Rev. B, 56 (1997) 1354.
35. G.G. Amatucci, J.M. Tarascon, and L.C. Klein,. J. Electrochem. Soc., 143 (1996) 1114.
36. A. Van der Ven, M. K. Aydinol, and G. Ceder, Phys. Rev. B, 58 (1998), 2975.
37. J. N. Reimers and J. R. Dahn, J. Electrochem. Soc., 139 (1992) 2091.
38. T. Ohzuku and A. Ueda, J. Electrochem. Soc., 141 (1994) 2972.
39. J. Cho and G. Kim, Electrochem. Solid State Lett., 2 (1999), 253.
40. J. Cho, Y. J. Kim and B. Park, Chem. Mater., 12 (2000) 3788.
41. G.G. Amatucci, A. Blyr, C. Sigala, P. Alfonse and J. M. Tarascon, Solid State Ionics, 104 (1997) 13.
42. Y. J. Kim, T. J. Kim, J. W. Shin, B. Park, and J. Cho, J. Electrochem. Soc., 149 (2002) A1337.
43. L. Liu, L. Chen, X. Huang, X. Q. Yang, W. S. Yoon, H. S. Lee, and J. McBreen, J. Electrochem. Soc., 151 (2004) A1344.
44. K. Y. Chung, W. S. Yoon, J. McBreen, X. Q. Yang, S. H. Oh, H. C. Shin, W. I. Cho and B. W. Cho, J. Electrochem. Soc., 153 (2006) A2152.
45. J. Morales, C. Perez-Vicente, J.L. Tirado, Mater. Res. Bull., 25 (1990) 623.
46. T. Ohzuku, A. Ueda and M. Kouguchi, J. Electrochem. Soc., 142 (1995) 4033.
47. W. Li, J. C.Currie and J. Wolstenholme, J. Power Souces, 68 (1997) 565.
48. T. Ohzuku, M. Kitagowa and T. Hiral, J. Electrochem. Soc., 17 (1990) 769.
49. J. M. Tarascon, E. Wang, F. Shokoohi, W. R. McKinnon and S. Colson, J. Electrochem. Soc., 138 (1991) 2859.
50. M. Yonemura, A. Yamada, H. Kobayashi, M. Tabuchi, T. Kamiyama, Y. Kawamoto and R. Kanno, J. Mater. Chem., 14 (2004) 1948.
51. M. M. Thackeray, Prog. Solid State Chem., 25 (1997) 1.
52. R. J. Gummow, A. DeKock, and M. M. Thackeray, Solid State Ionics, 69 (1994) 59.
53. A. D. Robertson, S. H. Lu, W. F. Averill and W. F. Howard Jr., J. Electrochem. Soc., 144 (1997) 3500.
54. H.W. Chan, J.G. Duh, H.S. Sheu, and Y.P. Chiang, J. Electrochem. Soc., 153 (2006) A1533.
55. P. Arora, B. N. Popov and R. E. White, J. Electrochem. Soc., 145 (1998) 807.
56. H.W. Chan, J.G. Duh and J.F. Lee, Electrochem. Commun., 8 (2006) 1731.
57. Y.K. Sun, K.J. Hong, J. Prakash, K. Amine, Electrochem. Commun., 4 (2002) 344.
58. Y. Xia, N. Kumada, and M. Yoshio, J. Power Sources, 90 (2000) 135.
59. A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, J. Electrochem. Soc., 144 (1997) 1188.
60. A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada and J. B. Goodenough, J. Electrochem. Soc., 144 (1997) 1609.
61. H. Huang, S. C. Yin and L.F. Nazar, Electrochem. Solid State Lett., 4, (2001) A170.
62. S. S. Zhang, J. L. Allen, K. Xu and T. R. Jow, J. Power Sources, 147 (2005) 234.
63. S. Franger, C. Bourbon and F. L. Cras, J. Electrochem. Soc., 151 (2004) A1024.
64. R. Dominko, J. M. Goupil, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel and J. Jamnik, J. Electrochem. Soc., 152 (2005) A858.
65. S.Y. Chung, J. T. Bloking and Y.M. Chiang, Nature Materials, 1 (2002) 123.
66. I. Saardoune and C. Delmas, J. Solid State Chem., 136 (1998) 8.
67. C. Pouilerie, F. Perton, P. Biensan, J. P. Peres, M. Broussely and C. Delmas, J. Power Sources, 96 (2001) 293.
68. E. Rossen, C. D. W. Jones, J. R. Dahn, Solid State Ionics, 57 (1992) 311.
69. M. E. Spahr, P. Novák, B. Schnyder, O. Haas and R. Nesper, J. Electrochem. Soc., 145 (1998) 1113.
70. T. Ohzuku and Y. Makimura, Chem. Lett., 2001, 744.
71. Y. Makimura and T. Ohzuku, J. Power Sources, 119-121(2003) 156.
72. Z. Liu, A. Yu and J.Y. Lee, J. Power Sources, 81-82 (1999) 416.
73. N. Yabuuchi and T. Ohzuku, J. Power Sources 119-121 (2003) 171.
74. Y. Koyama, N. Yabuuchi, I. Tanaka, H. Adachi and T. Ohzuku, J. Electrochem. Soc., 151 (2004) A1545.
75. N. Yabuuchi, Y. Makimura and T. Ohzuku, J. Electrochem. Soc., 154 (2007) A314.
76. H. Yoshizawa, T. Ohzuku, Denki Kagaku, 71 (2003) 1177.
77. S. W. Lee, G. B. Kim, Y. C. Park and S. S. Kim, U. S. Patent No. 5,910,296 (1999).
78. C. C. Yang, Int. J. Hydrogen Energy, 27 (2002) 1071.
79. Z. Chang, G. Li, Y. Zhao, J. Chen and Y. Ding, J. Power Sources, 74 (1998) 252.
80. C. Y. Jiang, Q. R. Zhang, X. H. Du and C. R. Wan, Chinese J. Power Sources, 24 (2000) 207.
81. S. T. Yang, G. R. Chen, Y. H. Yin and H. J. Chen, Battery Bimonthly, 31 (2001) 107.
82. J. Ying, C. Wan, C. Jiang, Y. Li, J. Power Source, 99 (2001) 78.
83. J. R. Dahn, U. von Sacken and C. A. Michal, Solid State Ionics, 44 (1990) 87.
84. M. E. Spahr, P. Nova´k, B. Schnyder, O. Haas, R. Nesper, J. Electrochem. Soc., 145 (1998) 1113.
85. J. N. Reimers, J. R. Dahn, J. Electrochem. Soc., 139 (1992) 2091.
86. G. G. Amatucci, J. M. Tarascon, L. C. Klein, J. Electrochem. Soc., 143 (1996) 1114.
87. X. Q. Yang, X. Sun and J. McBreen, Electrochem. Commu., 2 (2000) 100.
88. T. Ohzuku, A. Ueda and M. Nagayama, J. Electrochem. Soc., 140 (1993) 1862.
89. J. R. Dahn, U. von Sacken and C. A. Michal, Solid State Ionics, 44 (1990) 87.
90. W. Li, J. N. Reimers and J.R. Dahn, Solid State Ionics, 67 (1993) 123.
91. X. Q. Yang, X. Sun and J. McBreen, Electrochem. Commu., 1 (1999) 227.
92. X. Q. Yang, X. Sun and J. McBreen, Electrochem. Commu., 2 (2000) 733.
93. E. Levi, M. D. Levi, G. Salitra, D. Aurbach, R. Oesten, U. Heider and L. Heider, Solid State Ionics, 126 (1999) 97.
94. T. Fang and J. G. Duh, Surface & Coatings Technology, 201 (2006) 1886.
95. J. Cho, Y. J. Kim and B. Park, Chem. Mater., 12 (2000), 3778.
96. J. Cho, Y. J. Kim T. J. Kim and B. Park, Angew. Chem., Int. Ed., 40 (2001), 3367.
97. Z. Chen and J. R. Dahn, Electrochem. Solid State Lett., 5 (2002) A213.
98. H. W. Chan, J. G. Duh and S. R. Sheen, Surface & Coatings Technology 188–189 (2004) 116.
99. K. Y. Chung, W. S. Yoon, H. S. Lee, J. McBreen, X. Q. Yang, S. H. Oh, W. H. Ryu, J. L. Lee, W. I. Cho and B. W. Cho, J. Power Sources, 163 (2006) 185.
100. I. Nakai, K. Takahashi, Y. Shiraishi, T. Nakagome, F. Izumi, Y. Ishii, F. Nishikawa and T. Konishi, J. Power Source, 68, 536 (1997).
101. I. Nakai, K. Takahashi, Y. Shiraishi, T. Nakagome and F. Nishikawa, J. Solid State Chem., 140 (1998) 145.
102. A. Rougier and C. Delmas, Solid State Commu., 74 (1995) 123.
103. M. Balasubramanian, J. McBreen, I. J. Davidson, P. S. Whitfield and I. Kargina, J. Electrochem. Soc., 149 (2002) A176.
104. M. Balasubramanian, X. Sun, X. Q. Yang, J. McBreen, J. Power Sources, 92 (2001) 1.
105. R. J. Gummow, M. M. Thackeeay, W. I. F. David, and S. Hull, Mater. Res. Bull., 27 (1992) 327.
106. D. Li, T. Muta, L. Zhang, M. Yoshio, H. Noguchi, J. Power Sources, 132 (2004) 150.
107. Z. Lu, D. D. MacNeil, J. R. Dahn, Electrochem. Solid-State Lett. 4 (2001) A200.
108. Y. Chen, G. X. Wang, K. Konstantinov, H. K. Liu, S. X. Dou, J. Power Sources 119-121 (2003) 184.
109. G. X. Wang, S. Bewlay, J. Yao, Y. Chen, Z. P. Guo, H. K. Liu, S. X. Dou, J. Power Sources, 119-121 (2003) 189.
110. Z. Lu, and J. R. Dahn, J. Electrochem. Soc., 149 (2002) A815.
111. X. Q. Yang, J. McBreen, W. S. Yoon, and C. P. Grey, Electrochem. Commun., 4 (1999) 649.
112. Z. Wang, Y. Sun, L. Chen, and X. Huang, J. Electrochem. Soc., 151 (2004) A914.
113. W.S. Yoon, C.P. Grey, M. Balasubramanian, X.Q. Yang and J. McBreen, Chem. Mater. 15 (2003) 3161.
114. Y. W. Tsai, J.F. Lee, D.G. Liu and B.J. Hwang, J. Mater. Chem., 14 (2004) 958.
115. L. Seguin, G. Amatucci, M. Anne, Y. Chabre, P. Strobel, J. M. Tarascon and G. Vaughan, J. Power Sources, 81-82 (1999) 604.
116. A. Van der Ven, M. K. Aydinol, G. Ceder, G. Kresse and J. Hafner, Phys. Rev. B, 58 (1998) 2975.
117. S. T. Myung, S. Komaba, N. Hirosaki, N. Kumagai, K. Arai, R. Kodama and I. Nakai, J. Electrochem. Soc., 150 (2003) A1560.
118. Z. Lu and J.R. Dahn, J. Electrochem. Soc., 150 (2003) A1044.
119. T. Ohzuku, A. Ueda, and N. Yamamoto, J. Electrochem. Soc., 142 (1995) 1431.
120. O. Haas, A. Deb, E. J. Carins, and A. Wokaun, J. Electrochem. Soc. 152(1) (2005) A191.
121. M. G. Kim, H. J. Shin, J. H. Kim, S. H. Park, and Y. K. Sun, J. Electrochem. Soc. 157 (7) (2005) A1320.
122. A. Deb, U. Bergmann, S. P. Cramer, and E. J. Cairns, J. Appl. Phys. 97 (2005) 113523.
123. Y. W. Tasi, B. J. Hwang, G. Ceder, H. S. Sheu, D. G. Liu, and J. F. Lee, Chem. Mater. 17 (2005) 3191.
124. B. Ammundsen, J. Paulsen, I. Davidson, R. S. Liu, C. H. Shen, J. M. Chen, L. Y. Jang, and J. F. Lee, J. Electrochem. Soc. 149(4) (2002) A431.
125. N. Yabuuchi, Y. Koyama, N. Nakayama and T. Ohzuku, J. Electrochem. Soc. 152(7) (2005) A1434.
126. M. G. Kim, and C. H. Yo, J. Phys. Chem. B 103 (1999) 6457.
127. E. Levi, M. D. Levi, G. Salitra, D. Aurbach, R. Oesten, U. Heider, and L. Heider, Solid State Ionics 126 (1999) 97.
128. W. S. Yoon, K. Y. Chung, J. McBreen, and X. Q. Yang, Electrochem. Commun. 8 (2006) 1257.
129. G. W. Wang, Z. P. Guo, X. Q. Yang, J. McBreen, H. K. Liu and S. X. Dou, Solid State Ionics, 167 (2004) 183.
130. C. Pouillerie, L. Croguennec, Ph. Biendan, P. Willmann and C. Delmas, J. Eelectrochem. Soc. 147 (6) (2000) 2061.
131. S. B. Jang, S. H. Kang, K. Amine, Y. C. Bar and Y. K. Sun, Electrochim. Acta, 50 (2005) 4168.
132. K. S. Lee, S. T. Myung. H. J. Bang, S. Chung and Y. K. Sun, Electrochim. Acta 52 (2007) 5201.
133. H. W. Chan, J. G. Duh and J. F. Lee, Electrochem. Commun 8 (2006) 1731.
134. R. Kanno, T. Shirane, Y. Inaba and Y. Kawamoto, J. Power Sources 68 (1997) 145.
135. W. S. Yoon, K. Y. Chung, M. McBreen and X. Q. Yang, Electrochem. Commun. 8 (2006) 1257.
136. C. C. Chang, J. Y. Kim and P. N. Kumta, J. Electrochem. Soc. 147 (5) (2000) 1722.
137. P. Y. Liao, J. G. Duh, J. F. Lee and H. S. Sheu, Electrochim. Acta 53 (2007) 1850.
138. M. Mladenov, R. Stoyanova, E. Zhecheva and S. Vassilev, Eletrochem. Commun. 3 (2001) 410.
139. M. Guilmard, A. Rougier, M. Grüne, L. Croguennec and C. Delmas, J. Power Sources 115 (2003) 305.
140. W. Li, J. N. Reimers and J. R. Dahn, Solid State Ionics 67 (1993) 123.
141. L. Wang, T. Maxisch and G. Ceder, Chem. Mater. 19(3) (2007) 543.
142. P. Y. Liao, J. G. Duh and H. S. Sheu, Electrochem. Solid-State Lett. 10 (4) (2007) A88.
143. C. H. Chen, B. J. Hwang, C. Y. Chen, S. K. Hu, J. M. Chen, H. S. Sheu and J. F. Lee, J. Power Sources 174 (2007) 938.
144. W. S. Yoon, M. Balasubramanian, K. Y. Chung, X. Q. Yang, J. McBreen, C. P. Grey and F. A. Fischer, J. Am. Chem. Soc. 127 (2005) 17479.
145. C. S. Johnson and A. J. Kropf, Electrochim. Acta 47 (2002) 3187.
146. A. Deb and E. J. Cairns, Fluid Phase Equilibria 241 (2006) 4.
147. A. Deb, U. Bergmann, S. P. Cramer and E. J. Cairns, J. Appl. Phys. 99 (2006) 063701.
148. A. N. Mansour, X.Q. Yang, X. Sun, J. McBreen, L. Croguennec and C. Delmas, J. Electrochem. Soc. 147 (2000) 2104.