簡易檢索 / 詳目顯示

研究生: 蔡斐然
TSAI, FEI-JAN
論文名稱: 壓水式反應器爐心熔損事故之壓力槽內滯留裝置移熱能力模擬
Simulation of the In-Vessel Retention Device Heat-removal Capability of Pressurized Water Reactor during a Core Meltdown Accident
指導教授: 李敏
LEE, MIN
口試委員: 陳紹文
CHEN, SHAO-WEN
白寶實
PEI, BAU-SHEI
施純寬
SHIH, CHUN-KUAN
苑穎瑞
YUANN, YNG-RUEY
梁國興
LIANG, KUO-SHING
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 136
中文關鍵詞: 壓水式反應器壓力槽外部冷卻裝置壓力槽內滯留臨界熱通率RELAP5-3DMELCOR
外文關鍵詞: Pressurized Water Reactor, IVR, ERVC, CHF, RELAP5-3D, MELCOR
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究為評估壓水式反應器壓力槽外部冷卻裝置(External Reactor Vessel Cooling,ERVC)將熔融物滯留壓力槽內(In-Vessel Retention,IVR)之能力,本研究以系統熱水流分析程式RELAP5-3D為主要分析工具,嚴重事故分析程式MELCOR為輔助分析工具。建立RELAP5-3D輸入檔,模擬IVR-ERVC之自然對流與移熱能力,利用模擬結果之熱水流參數,帶入臨界熱通率(Critical Heat Flux,CHF)經驗公式,計算分析不同位置之臨界熱通率,了解壓水式反應器 IVR 相關設計的安全餘裕,並比較MELCOR與RELAP5-3D之模擬結果。
    本論文分為兩部分,第一階段為以RELAP5-3D程式模擬AP-1000 IVR裝置,以兩種熔融爐渣池層次結構以固定功率帶入RELAP5-3D輸入檔計算,將RELAP5-3D模擬結果代入ULPU、SULTAN、SBLB和KAIST臨界熱通率關係式的相關參數中,以確定AP-1000 IVR設計的安全裕度。結果顯示臨界熱通率隨角度增加。但反應器壓力槽底部半球形90度角處的臨界熱通率與臨界熱通率比 (Critical Heat Flux Ratio,CHFR)最低。結果顯示熔融池層次結構分佈對IVR安全性能的影響非常顯著。
    研究第二部分使用MELCOR模擬高功率壓水式反應器CAP1700嚴重事故的演變。將MELCOR計算得到之熔融爐渣池對壓力槽壁的瞬態熱負載輸入RELAPR-3D模型,模擬IVR流道內的自然對流,再計算所得之IVR流道熱水流參數代入ULPU,SULTAN,SBLB和MELCOR臨界熱通率關係式中,並評估IVR的有效性。 MELCOR的模擬結果表示,壓力槽槽壁熱負載取決於熔融爐渣池層次結構型態。在483分鐘時,爐心底部外壁的熱通率在傾角約為68°時達到最高值。隨著事故的發展,熱通率峰值從小傾角移動到更大的角度。 MELCOR和RELAP5-3D的模擬結果均顯示,當IVR流道中的水達到飽和狀態時,流量會出現大幅度波動。肇因為兩相流引起的不穩定性。如果IVR的入口水溫度可以保持足夠低以避免IVR通道沸騰,RELAP5-3D所預測的流道流量將接近大致穩定狀態。MELCOR 與RELAP5-3D IVR 流道的熱水流模擬結果顯示,MELCOR 程式的熱水流模擬部分尚有改進的空間。
    各臨界熱通率關係式所預測臨界熱通率與時間的關係差異均非常不明顯,差異最大的為SULTAN預測值,差異小於1.7%。分析結果顯示,熱通率最大值 (483分鐘) 時,不同經驗公式所預測之臨界熱通率比(CHFR)的最小值在55°和75°之間。除了MELCOR關係式之外,所預測的臨界熱通率比(CHFR)皆大於1.2。CAP1700反應器發生冷卻水流失事故引發之嚴重事故中,IVR 可以發揮功效終止嚴重事故的進一步惡化。


    In the advanced design of Pressurized Water Reactor (PWR), In-Vessel Retention (IVR) device is incorporated to enhance the capability of removing heat through the outer wall of the reactor vessel during a core meltdown. External reactor vessel cooling (ERVC) is established by flooding the reactor cavity during a severe accident. Previous studies have concluded that the amount of heat removed from the debris pool in the vessel lower plenum is limited by the critical heat flux (CHF) at the outer surface of the vessel wall. In the present study, the effectiveness of ERVC/IVR in terminating the progression of a core melt accident is investigated. The codes used in the assessment are RELAP5-3D and MELCOR. The RELAP5-3D thermal-hydraulic code is used to simulate the natural convection flow within the water channel of the IVR device. MELCOR is used in the integrated simulation of a core melt sequence to determine the heat load on the vessel wall of lower plenum. The results of RELAP5-3D simulation are substituted into selected Critical Heat Flux (CHF) correlation to determine the heat removal capability of IVR.
    The study is separated into two parts. In the first part of study, a three-dimensional model of RELAP5-3D is constructed to micmic the IVR design of AP1000. The heat load to the lower head is based on two bounding melt configurations. Configuration I involves a stratified light metallic layer on top of a molten ceramic pool, and Configuration II represents the condition that an additional heavy metal layer forms below the ceramic pool. The results of RELAP5-3D IVR simulation demonstrated that a natural convection flow can be established smoothly after the heat load is imposed and the heat transfer mode at the vessel outer surface is nucleate boiling. The results of RELAP5-3D simulations are substituted into ULPU, SULTAN, SBLB, and KAIST critical heat flux correlations to determine the safety margin of the AP-1000 IVR design. Among these four correlations, the CHFs predicted by the ULPU and SBLB correlations are insensitive to the thermal-hydraulic conditions of the coolant channel. The CHF predicted by SULTAN is the lowest among the four correlations. The results demonstrate that the predicted CHF increases with the angle. Nevertheless, the ratio of CHF to heat flux is lowest around the upper quarter of the vessel. The impact of corium pool configuration on the safety performance of IVR is very significant. Under Configuration II, as predicted by the SULTAN and KAIST correlations, the performance of the current AP-1000 IVR design is marginal.
    In the second part of the study, the transient heat load to the vessel wall of vessel lower plenum is obtained from an integrated analyses for a selected core melt sequence of CAP1700 PWR with thermal power around 5000 MW. The sequence selected is a large Loss of Coolant Accident (LOCA) in conjunction with station blackout. The transient load to the lower plenum vessel wall is transported to RELAP5-3D simulation of IVR. The MELCOR simulation demonstrated that the heat load at the vessel wall of the lower plenum depends on the configuration of the debris pool in the lower plenum. The heat flux to the vessel wall reached a maximum at 483 min, at an inclination angle of approximately 68°. The peak heat flux moved from a small inclination angle to a larger angle as the accident progressed. Both MELCOR and RELAP5-3D calculations predicted a gradual buildup of natural convection flow within the IVR channel following the application of a heat load to the vessel wall. Both codes predicted that the flow would experience large amplitude fluctuations as the water in the IVR flow channel reached saturation. These fluctuations were attributed to instability induced by two-phase flow. The flow as predicted by these two codes is significantly different.
    If the inlet temperature can be kept sufficiently low to obviate boiling in the IVR channel, RELAP5-3D predicts that the channel flow will approach an approximately steady state. The selected CHF correlations predicted significantly different CHFs. Nevertheless, the predicted CHFs are relatively time independent. The minimum ratio of CHF to heat flux occurs at 483 minutes after accident initiation. The minimum margin was found between 55° and 75° in all correlations. Except the MELCOR correlation, the CHFR predicted by other three correlations are greater than 1.2. MELCOR correlation was developed based on the experimental data of pool boiling. It can be concluded that the IVR design of CAP1700 can effectively retain the core melt with the vessel lower plenum.

    摘 要 i Abstract iii 目錄 vi 表目錄 viii 圖目錄 ix 英文縮寫及中文對照 xii 符號說明 xiv 第一章 序 章 1 1.1、 研究動機 1 1.2、 研究方法 2 1.3、 論文架構 3 第二章 文獻回顧 4 2.1、 前言 4 2.2、 熔融爐渣池熱傳現象 7 2.3、 壓力槽外壁之臨界熱通率 7 2.3.1、 臨界熱通率文獻回顧 7 2.3.2、 臨界熱通率經驗公式整理 9 2.3.2.1、 ULPU 9 2.3.2.2、 SULTAN 10 2.3.2.3、 SBLB 11 2.3.2.4、 KAIST 14 2.3.2.5、 MELCOR 15 2.4、 整合評估 19 第三章 程式簡介 23 3.1、 RELAP5程式簡介 23 3.1.1、 多維度元件介紹 26 3.2、 MELCOR程式簡介 29 第四章 IVR 有效性之穩態評估-以AP-1000設計為例 31 4.1、 前言 31 4.2、 AP-1000電廠介紹 32 4.3、 RELAP5-3D熱水流IVR模型 35 4.3.1、 熔融爐渣池層次結構型態I與II說明 40 4.3.2、 RELAP5-3D熱水流分析結果 45 4.4、 AP-1000 IVR臨界熱通率 50 4.4.1、 預測臨界熱通率的比較 50 4.4.1.1、 熔融池層次結構型態I臨界熱通率 52 4.4.1.2、 熔融池層次結構型態II臨界熱通率 56 4.4.2、 移熱限制 (CHFR) 59 4.4.3、 IVR環隙寬度對CHF的影響 62 第五章 IVR 有效性之暫態評估 -以CAP-1700設計為例 65 5.1、 前言 65 5.2、 CAP-1700反應器介紹 67 5.3、 CAP-1700電廠MELCOR熱水流整廠模型 69 5.3.1、 MELCOR整廠模型簡介 69 5.3.1.1、 爐心與壓力槽下部 73 5.3.1.2、 熔融池與底部 75 5.3.1.3、 外部冷卻通道 80 5.3.1.4、 圍阻體 82 5.3.2、 MELCOR熱水流整廠模型分析結果 84 5.3.2.1、 穩態結果 84 5.3.2.2、 暫態結果 86 5.4、 RELAP5-3D CAP-1700 IVR流道模型 112 5.4.1、 RELAP5-3D IVR流道模型簡介 112 5.4.1.1、 控制體積傾角計算 114 5.4.2、 RELAP5-3D熱水流IVR模型分析結果 117 5.5、 CAP-1700 IVR臨界熱通率 122 5.5.1、 預測臨界熱通率的比較 122 5.5.2、 移熱限制(CHFR) 126 第六章 總 結 128 參考文獻 132

    [1] Westinghouse, “AP-1000 Design Control Document, Revision 17”, 2008.
    [2] 劉相君 Liu, H.C., 2011. Margin assessment of AP1000 in-vessel retention using RELAP5-3D, Master thesis, Department of Nuclear Engineering and Science, National Tsing Hua University, Hisnchu, Taiwan.
    [3] The RELAP5-3D Code Development Team, “RELAP5-3D Code Manual”, INEEL-EXT-98-00834, June 2005.
    [4] “MELCOR Computer Code Manual,” Sandia National Laboratories, Version 1.8.5 OCT. 2000.
    [5] “MELCOR Computer Code Manual,” Sandia National Laboratories, Version 1.8.6 Sep. 2005.
    [6] Knudson, D.L., Rempe, J.L., Condie, K.G., 2004. Late-phase melt conditions affecting the potential for in-vessel retention in high power reactors. Nucl. Eng. Des. 230, 133–150.
    [7] Theofanous, T.G., Liu C., Additon S., Angelini S., Kymalainen, O., Salmassi, T., 1996. In vessel coolability and retention of a core melt, DOE/ID-10460.
    [8] Theofanous, T.G., Maguire, M., Angelini, S., et al., 1997. The first results from the ACOPO experiment. Nucl. Eng. Des. 169, 49–57.
    [9] Asfia, F.J., Dhir, V.K., 1996. An experimental study of natural convection in a volumetrically heated spherical pool bounded on top with a rigid wall, Nucl. Eng. Des. 163, 333–348.
    [10] Allison, C.M., Rempe, J.L., Chavez, S.A., 1994. Design report on SCDAP/RELAP5 model improvements–debris bed and molten pool behavior. INEEL-94/0174.
    [11] Theofanous, T.G., Syri, S., 1997. The coolability limits of a reactor pressure vessel lower head, Nucl. Eng. Des. 169, 59–76.
    [12] Rempe, J.L., Knudson, D.L., Allison, C.M. et al., 1997. Potential for AP600 in-vessel Retention through ex-vessel Flooding. Technical evolution report, INEEL/EXT-97-00779.
    [13] Chu, T.Y., et al., 1997. Ex-vessel boiling experiments: Laboratory and reactor-scale testing of the flooded cavity concept for in-vessel core retention, Nucl. Eng. Des. 169, 77–88.
    [14] Theofanous, T.G., Syri, S., Salmassi, T., Kymalainen, O., Tuomisto, H., 1994. Critical heat flux through curved, downward facing, thick walls, Nucl. Eng. Des. 151, 247–258.
    [15] Dinh, T.N., Tu, T.P., Salmassi, T., Theofanous, T.G., 2003. Limits of coolability in the AP1000-related ULPU-2400 Configuration V facility, Proceedings of the 10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-10), Seoul, Korea.
    [16] Theofanous, T.G., Oh, S.J. Scobel, J.H., 2004. In-Vessel Retention Technology Development and Use for Advanced PWR Design in the USA and Korea. Technical Report, FG07-02RL14337.
    [17] Cheung, F.B., Haddad, K., Liu, Y.C., 1997. Critical heat flux (CHF) phenomena on a downward facing curved surface, NUREG/CR-6507, The Pennsylvania State University.
    [18] Cheung, F.B., Liu, Y.C., 1998. Critical heat flux (CHF) phenomena on a downward facing curved surface: Effects of thermal insulation, NUREG/CR-5534, The Pennsylvania State University.
    [19] Yang, J., Cheung, F.B., Rempe, J.L., Suh, K.Y., Kim, S.B., 2006. Critical heat flux for downward-facing boiling on a coated hemispherical vessel surrounded by an insulation structure, Nucl. Eng. Tech. 38, 139–146.
    [20] Rouge, S., 1997. SULTAN test facility for large-scale vessel coolability in natural convection at low pressure, Nucl. Eng. Des. 169, 185–195.
    [21] Rouge, S., Dor, I., Geffraye, G., 1998. Reactor vessel external cooling for corium retention SULTAN experimental program and modeling with CATHARE code, Proc. OECD/CSNI Workshop In-Vessel Core Debris Retention and Coolability, NEA/CSNI/R (98)18, Garching, Germany, 351–363.
    [22] Jeong, Y.H., Chang, S.H., Baek, W.P., 2005. CHF experiments on the reactor vessel wall using 2-D slice test section, Nucl. Tech. 152, 162–169.
    [23] Park, H.M., Jeong, Y.H., Chang, S.H., 2013. The effect of the geometric scale on the critical heat flux for the top of the reactor vessel lower head, Nucl. Eng. Des. 258, 176–183.
    [24] Esmaili, H., Khatib-Rahbar, M., 2004. Analysis of in-vessel retention and ex-vessel fuel coolant interaction for AP1000. Energy Research, Inc., ERI/NRC 04-201, NUREG/CR-6849.
    [25] Esmaili, H., Khatib-Rahbar, M., 2005. Analysis of likelihood of lower head failure and ex-vessel fuel coolant interaction energetics for AP1000, Nucl. Eng. Des. 235, 1583–1605.
    [26] Chang, S.H., Jeong, Y.H., 2002. CHF experiments for external vessel cooling using 2-D slice test section, presented at Severe Accident Management Study on Nuclear installations (SAMSON) Seminar on In-Vessel Retention Strategy for High-Power Reactors, Seoul National University, Seoul, Korea.
    [27] Mohamed S. EI-Genk and Zhanxiong Guo, 1992. Transient boiling from inclined and downward-facing surfaces in a saturated pool. International Journal of Refrigeration, Volume 16, Issue 6, 1993, Pages 414-422.
    [28] Henry, R., Fauske, H., 1993. External cooling of a reactor vessel under severe accident conditions. Nucl. Eng. Design 139, 31–43.
    [29] Liu, H.C., Lee, Min, Thomas K.S. Liang, 2012. Margin Assessment of AP1000 In-vessel Retention Using RELAP5-3D. ICONE20-POWER2012. Anaheim, California, USA
    [30] Pilch, M.M., et al., 1996. Resolution of the direct containment heating issue for all Westinghouse plants with large dry containments or sub-atmospheric containments, NUREG/CR-6338.
    [31] Zhang, Y.P., Qiu, S.Z., Su, G.H., Tian, W.X., 2010. Analysis of safety margin of in-vessel retention for AP1000, Nucl. Eng. Des. 240(8), 2023–2033.
    [32] 蔡斐然 Fei-Jan Tsai, Min Lee. 2017. Simulation of the in-vessel retention device heat-removal capability of AP-1000 during a core meltdown accident. Annals of Nuclear Energy. 99, 455-463.
    [33] J.L. Rempe, D.L. Knudson, K.G. Condie, K.Y. Suh, F.-B. Cheung, S.-B. Kim, 2004. Corium retention for high power reactors by an in-vessel core catcher in combination with External Reactor Vessel Cooling. Nucl. Eng. Des. 230, 293–309.
    [34] 金越 Yue Jin, Wei Xu, Xiaojing Liu, Xu Cheng, 2015. In- and ex-vessel coupled analysis of IVR-ERVC phenomenon for large scale PWR, Annals of Nuclear Energy, 80, 322-337.
    [35] Seiler, J.M., Fouquet, A., Froment, K., Defoort, F., 2003. Theoretical analysis for corium pool with miscibility gap. Nuclear Technology 141, 233–243.
    [36] Yuan, Z., Zavisca, M., Khatib-Rahbar, M., 2003. Impact of the reactor pressure vessel insulation on the progression of severe accidents in AP1000. Energy Research, Inc., ERI/NRC 03-205.
    [37] Zavisca, M., Yuan, Z., Khatib-Rahbar, M., 2003. Analysis of selected accident scenarios for AP1000. Energy Research, Inc., ERI/NRC 03-201.
    [38] Gauntt, R.O., Cole, R.K., Erichson, C.M., Gido, R.G., Gasser, R.D., Rodriguez, S.B., Young, M.F., 2005a. MELCOR Computer Code Manuals, vol. 1: Primer and Users’ Guide. Sandia National Laboratories, Albuquerque, NM 87185-0739.
    [39] Gauntt, R.O., Cole, R.K., Erichson, C.M., Gido, R.G., Gasser, R.D., Rodriguez, S.B., Young, M.F., 2005b. MELCOR Computer Code Manuals, vol. 2: Reference Manuals. Sandia National Laboratories, Albuquerque, NM 87185-073.
    [40] Bonnet, J.M., Seiler, J.M., 2000. In-Vessel Corium Pool Thermalhydraulics for the Bounding Cases. RASPLAV Seminar, Munich.
    [41] Globe, S., Dropkin, D., 1959. Natural-convection heat transfer in liquids confined by two horizontal plates and heated from below. Heat Transfer 81, 24–28

    QR CODE