簡易檢索 / 詳目顯示

研究生: 楊皓翔
Yang, Hao-Hsiang
論文名稱: 即時動態調整投資組合機制
A Real-time Procedure to Update Portfolio Allocations
指導教授: 王馨徽
Wang, Shih-Huei
口試委員: 王泓仁
Wang, Hung-Jen
蔡恆修
Tsai, Heng-Hsiu
蕭政
Hsiao, Cheng
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 計量財務金融學系
Department of Quantitative Finance
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 32
中文關鍵詞: 投資組合報酬預測加總資料緩長記憶結構轉換分散風險
外文關鍵詞: Portfolio Forecast, Aggregated Time Series, Long Memory, Structural Break, Risk Reduction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在提供簡單且實用的投資組合動態調整程序。本程序透過偵測市場及經濟狀況提出調整方法,能大幅降低損失。偵測方法主要是透過市場資料在大幅波動時所呈現之緩長記憶特性。我們提供準確穩定的緩長記憶參數估計法、設計可信的結構轉換檢定、找到準確的投資組合報酬預測法、投資組合配置產業指標。透過蒙地卡羅模擬,我們發現(1)橫斷面相關的資料在整合後會有緩長記憶的特性(2)整合資料的預測結果比個別預測的結果準確。實證部分,我們選用NASDAQ每個產業前20大市值的公司股票組成投資組合,結果顯示我們所提出的程序在風險控管方面有很好的表現。


    This paper provides a practical and easy-to-implement procedure to update portfolio allocations in real time in response to volatile market conditions. The advantage of this procedure allows to greatly reduce the loss arising from market and economics uncertainty in that it could be achieved through a stable estimating method for long memory parameter, together with a reliable predictive test for structural breaks in the aggregated series, an accurate portfolio-forecasting method and particularly, an industry-specific criterion in deciding portfolio distribution, based on our new findings: (i) the aggregation of correlated time series displays the long memory property; (ii) the forecast of aggregated time series outperforms the aggregation of the forecast of each time series when speaking of the portfolio forecasting. Simulations confirm the theoretical justification and show promising finite sample performance of the proposed methodologies. As an illustration, we form a NASDAQ-Industry 20 portfolio which demonstrates the feasibility and superiority of our new real time portfolio updating procedure from risk management point of view.

    Cover Page 1 Abstract Page 2 Introduction Page 3~5 Long Memory Model and the Estimation Page 5~9 Finite Sample Comparison of Various d Value Estimations Page 9~11 Aggregation of Cross-sectional and Time Dependent Series Page 11~14 Test in Detecting Persistence Change Page 14~15 Empirical Result Page 15~18 Concluding Remarks Page 18 Reference Page 18~21 Table and Graph Page 22~34

    Baca, S. P., Garbe, B. L., & Weiss, R. A. (2000). The rise of sector effects in major equity markets. Financial Analysts Journal, 56(5), 34-40.
    Beran, J. (1995). Maximum likelihood estimation of the differencing parameter for invertible short and long memory autoregressive integrated moving average models. Journal of the Royal Statistical Society. Series B (Methodological), 659-672.
    Butler, A. W., Grullon, G., & Weston, J. P. (2005). Can managers forecast aggregate market returns?. The Journal of Finance, 60(2), 963-986.
    Campbell, J. Y., Serfaty‐De Medeiros, K., & Viceira, L. M. (2010). Global currency hedging. The Journal of Finance, 65(1), 87-121.
    Cavaglia, S., Brightman, C., & Aked, M. (2000). The increasing importance of industry factors. Financial Analysts Journal, 56(5), 41-54.
    Cheung, Y. W., & Diebold, F. X. (1994). On maximum likelihood estimation of the differencing parameter of fractionally-integrated noise with unknown mean. Journal of Econometrics, 62(2), 301-316.
    Doornik, J. A., & Ooms, M. (1999). A package for estimating, forecasting and simulating ARFIMA models: Arfima package 1.0 for Ox. Preprint, Erasmus University.
    Doornik, J. A., & Ooms, M. (2003). Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models. Computational Statistics & Data Analysis, 42(3), 333-348.
    Fildes, R. (1989). Evaluation of aggregate and individual forecast method selection rules. Management Science, 35(9), 1056-1065.
    Fox, R., & Taqqu, M. S. (1986). Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series. The Annals of Statistics, 517-532.
    Geweke, J., & Porter‐Hudak, S. (1983). The estimation and application of long memory time series models. Journal of time series analysis, 4(4), 221-238.
    Granger, C. W. (1980). Long memory relationships and the aggregation of dynamic models. Journal of econometrics, 14(2), 227-238.
    Hosking, J. R. (1981). Fractional differencing. Biometrika, 68(1), 165-176.
    Hosking, J. R. (1984). Modeling persistence in hydrological time series using fractional differencing. Water resources research, 20(12), 1898-1908.
    Hubrich, K. (2005). Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?. International Journal of Forecasting, 21(1), 119-136.
    Künsch, H. R. (1987). Intrinsic autoregressions and related models on the two-dimensional lattice. Biometrika, 74(3), 517-524.
    Lustig, H., Roussanov, N., & Verdelhan, A. (2014). Countercyclical currency risk premia. Journal of Financial Economics, 111(3), 527-553.
    Lyle, M. R., & Wang, C. C. (2015). The cross section of expected holding period returns and their dynamics: A present value approach. Journal of Financial Economics, 116(3), 505-525.
    McLeod, A. I., & Hipel, K. W. (1978). Simulation procedures for Box‐Jenkins Models. Water Resources Research, 14(5), 969-975.
    Poskitt, D. S. (2007). Autoregressive approximation in nonstandard situations: The fractionally integrated and non-invertible cases. Annals of the Institute of Statistical Mathematics, 59(4), 697-725.
    Robinson, P. M. (1978). Statistical inference for a random coefficient autoregressive model. Scandinavian Journal of Statistics, 163-168.
    Robinson, P. M. (1995). Gaussian semiparametric estimation of long range dependence. The Annals of statistics, 1630-1661.
    Robinson, P. M. (1995). Log-periodogram regression of time series with long range dependence. The annals of Statistics, 1048-1072.
    Shimotsu, K., & Phillips, P. C. (2005). Exact local Whittle estimation of fractional integration. The Annals of Statistics, 33(4), 1890-1933.
    Shimotsu, K. (2010). Exact local Whittle estimation of fractional integration with unknown mean and time trend. Econometric Theory, 26(2), 501-540.
    Sowell, F. (1992). Maximum likelihood estimation of stationary univariate fractionally integrated time series models. Journal of econometrics, 53(1-3), 165-188.
    Tieslau, M. A., Schmidt, P., & Baillie, R. T. (1996). A minimum distance estimator for long-memory processes. Journal of econometrics, 71(1-2), 249-264.
    Wang, S. h., Hsiao, Cheng, & Yang, H. H. (2017). Contagion, Systemic Risk and Diagnostic Tests in Large Mixed Panels. Working paper.
    Wang, S. H., & Vasilakis, C. (2013). Recursive predictive tests for structural change of long-memory ARFIMA processes with unknown break points. Economics Letters, 118(2), 389-392.
    Whitle, P. (1951). Hypothesis testing in time series analysis (Vol. 4). Almqvist & Wiksells.
    Zaffaroni, P. (2004). Contemporaneous aggregation of linear dynamic models in large economies. Journal of Econometrics, 120(1), 75-102.

    QR CODE