簡易檢索 / 詳目顯示

研究生: 陳亭安
Chen, Tin An
論文名稱: 奈米線蕭特基電荷捕捉快閃記憶體之研製分析
Fabrication and Analysis of Nanowire Schottky Barrier Charge Trapping Flash Memory
指導教授: 連振炘
Lien, Chenhsin
施君興
Shih, Chun-Hsing
口試委員: 邱福千
Chiu, Fu-Chien
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 79
中文關鍵詞: 電荷捕捉式快閃記憶體奈米線蕭特基能障
外文關鍵詞: Charge Trap Flash Memory, Nanowire, Schottky Barrier
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討具有低壓操作電壓特性的蕭特基奈米線電荷捕捉式快閃記憶體其製程製作與量測分析,此元件利用蕭特基源/汲極接面增強熱電子電洞的生成,以提升元件在寫入抹除時的效能。於製程製作上,嘗試使用兩種不同流程方式來進行電荷捕捉式快閃記憶體的奈米線通道製作。實驗過程發現,以乾式蝕刻製作法較能確保製程的穩定性與控制性。於量測分析上,進行不同溫度時電荷捕捉式快閃記憶體的電性量測分析。量測結果顯示,在變溫環境操作下,蕭特基矽奈米線電荷捕捉式快閃記憶體仍保有良好的電性曲線與可靠性表現。


    This thesis experimentally explores the process fabrication and measurement characterization of Schottky barrier nanowire charge trapping memories. Two different types of hard-mask lithography were examined to fabricate the gate-all-around nanowire structure. In cell characterization, this work studies the cell reading, programming, and erasing at room and higher temperatures. Reliability characterization in cycling endurance and data retention are also investigated. The results show that the high-temperature Schottky barrier nanowire charge trapping cells preserve good electrical characteristics.

    中文摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1-1. 前言 1 1-2. 非揮發記憶體元件 2 (1) 非揮發記憶體元件特性與種類 2 (2) 浮動閘極記憶體 3 (3) 矽/二氧化矽/氮化矽/二氧化矽/矽(SONOS)記憶體 4 1-3. 金屬矽化物 6 1-4. 論文架構 7 第二章 SONOS記憶體操作機制與可靠度 15 2-1. 通道熱電子寫入 15 2-2. 帶對帶穿隧抹除 16 2-3. 福勒-諾德漢穿隧寫入抹除 17 2-4. 蕭特基能障介紹及操作機制 17 2-5. 操作時間 19 2-6. 耐久度/保持力 19 第三章 元件製作與實驗參數 30 3-1. 元件製作流程 30 3-2. 通道製作與尺寸調變 32 3-3. 源/汲極材料變換與退火參數測試 34 3-4. 摻雜隔離使用與時機 35 第四章 元件電性量測與研究 41 4-1. 製作結果分析 41 (1) 濕式蝕刻調變奈米線 41 (2) 元件讀取 41 (3) 元件抹除 42 (4) 元件切面討論 42 4-2. 元件電性量測 44 (1) 室溫下電性 44 (2) 不同溫度下電性變化 45 (3) 溫度對耐久度/保持力之影響 46 第五章 結論 73 參考文獻 74

    [1] M. H. White, D. Adams and J. Bu, “On the Go with SONOS,” IEEE Circuits Devices Mag., pp. 22-31, 2000.
    [2] Min She, Hideki Takeuchi, Member, IEEE, and Tsu-Jae King, Senior Member, IEEE; ”Silicon-Nitride as a tunnel dielectric for improved SONOS-type flash memory”, IEEE Electron Device Letters , Volume: 24 NO.5 , MAY 2003 Page(s): 309 -311.
    [3] Fu, J., et al. "Polycrystalline Si nanowire SONOS nonvolatile memory cell fabricated on a gate-all-around (GAA) channel architecture." Electron Device Letters, IEEE 30.3 (2009): 246-249.
    [4] Shih, Chun-Hsing, et al. "Schottky barrier silicon nanowire SONOS memory with ultralow programming and erasing voltages." Electron Device Letters, IEEE 32.11, 2011: 1477-1479.
    [5] Chang, Wei, et al. "高性能蕭特基矽奈米線快閃記憶體." 國家奈米元件實驗室奈米通訊20.1 (2013): 12-17.
    [6] Uchida, Ken, et al. "Enhancement of hot-electron generation rate in Schottky source metal–oxide–semiconductor field-effect transistors." Applied Physics Letters 76.26 (2000): 3992-3994.
    [7] Xiong, Shiying, Tsu-Jae King, and Jeffrey Bokor. "A comparison study of symmetric ultrathin-body double-gate devices with metal source/drain and doped source/drain." Electron Devices, IEEE Transactions on 52.8, 2005: 1859-1867.
    [8] Zhang, M., et al. "Schottky barrier height modulation using dopant segregation in Schottky-barrier SOI-MOSFETs." Solid-State Device Research Conference, 2005. ESSDERC 2005. Proceedings of 35th European. IEEE, 2005.
    [9] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech, J., 46, 1288, 1967.
    [10] C. Y. Lu, T. C. Lu, R. Liu, “Non-Volatile Memory Technology-Today and Tomorrow,” Proc. of 13th International Symposium on the Physical and Failure Analysis of Integrated Circuits, Singapore, p.18, 2006.
    [11] J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transaction on Nanotechnology, 1, 72, 2002.
    [12] H Reisinger, M Franosch, B Hasle, T Bohm, ” A Novel SONOS Structure For Nonvolatile Memories With Improved Data Retention”, VLSI Technology, p.113, 1997.
    [13] H. A. R. Wegener, A. J. Lincoln, H. C. Pao, M. R. O'Connell, R. E. Oleksiak, H. Lawrence, “The Variable-Threshold Transistor, A New Electrically-Alterable, Nondestructive Read-Only Storage Device,” IEEE IEDM Tech. Dig., 1967.
    [14] P. C. Y. Chen, “Threshold-Alterable Si-Gate MOS Devices,” IEEE Trans. Electron Devices, pp. 584-586, 1977.
    [15] B. Y. Choi, B. G. Park, Y. K. Lee, S. K. Sung, T. Y. Kim, E. S. Cho, H. J. Cho, C. W. Oh, S. H. Kim, D. W. Kim and C. H. Lee, ”Highly Scalable and Reliable 2-bit/cell SONOS Memory Transistor beyond 50nm NVM Technology Using Outer Sidewall Spacer Scheme with Damascene Gate Process,” in Proc. VLSI, pp. 118-119, 2005.
    [16] H. Iwai, T. Ohguro, and S. I. Ohmi,“NiSi salicide technology for scaled CMOS, "Microelectronic Engineering, vol. 60, pp. 157-169, 2002.
    [17] K. Maex,“Silicides for integrated circuits:TiSi2 and CoSi2,”Material Science and Engineering, R11, 1993.
    [18] J. P. Gambino, and E. G. Colgan,“Invited review silicides and ohmic contacts,”Materials Chemistry and Physics, vol. 52, pp. 99-146, 1998.
    [19] T. Morimoto, T. Ohguro, H. S. Momose et al.,“Self-aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI,”IEEE Trans. Electron Devices, vol. 42, no. 5, 1995.
    [20] J. B. Lasky, J. S. Nakos, O. J. Cain, and P. J. Geiss,“Comparison of transformation to low-resistivity phase and agglomeration of TiSi2 and CoSi2,”IEEE Trans. Electron Devices, vol. 38, pp. 262-269, 1991.
    [21] 劉傳璽,「半導體元件物理與製程-理論與實務」,第七章,2006
    [22] F. Braun, Annal. Phys. Chem. 153, 556, 1874.
    [23] Pavan, Paolo, et al. "Flash memory cells-an overview." Proceedings of the IEEE 85.8 (1997): 1248-1271.
    [24] Simon Tam, Ping-Keung Ko and Chen-Ming Hu, “Lucky-Electron Model of Channel Hot-Electron Injection in MOSFET’s,” IEEE Trans. Electron Dev., pp. 1116-1125, 1984.
    [25] Yamada, Seiji, et al. "Degradation mechanism of Flash EEPROM programming after program/erase cycles." Electron Devices Meeting, 1993. IEDM'93. Technical Digest., International. IEEE, 1993.
    [26] Yoshikawa K., Mori S., Sakagami E., Ohshima Y., Kaneko Y. and Arai N., “Lucky-Hole Injection Induced by Band-to-Band Tunneling Leakage in Stacked Gate Transistors,” IEDM Tech. Dig., pp. 577-580, 1990.
    [27] Braun, Ferdinand. "Ueber die Stromleitung durch Schwefelmetalle." Annalen der Physik 229.12, 1875: 556-563.
    [28] W. Schottky, Naturwissenschaften 26, 843, 1938
    [29] S. M. Sze, Physics of Semiconductor Devices, 2nd ed (John Wiley & Sons, New York, 1981.
    [30] Hadis Morkoc, Nitride Semiconductors and Devices, Springer, pp.196, 1999
    [31] Shih, Chun-Hsing, et al. "Multilevel Schottky Barrier Nanowire SONOS Memory With Ambipolar n-and p-Channel Cells." Electron Devices, IEEE Transactions on 59.6, 2012: 1614-1620.
    [32] Paolo Cappelletti, Carla Golla, Piero Olivo, Enrico Zanoni, “Flash Meomry” KLUWER ACADEMIC PUBLISHERS , 2000
    [33] R. Bez, E. Camerlenghi, A. Modelli, A. Visconti, “Introduction to Flash Memory”, In Proc. Of the IEEE, vol. 91, no. 4, pp. 489-502, 2003
    [34] Tsai, W. J., et al. "Data retention behavior of a SONOS type two-bit storage flash memory cell." Electron Devices Meeting, 2001. IEDM'01. Technical Digest. International. IEEE, 2001.
    [35] Chang, Wei, et al. "A Localized Two-Bit/Cell Nanowire SONOS Memory Using Schottky Barrier Source-Side Injected Programming." Nanotechnology, IEEE Transactions on 12.5, 2013: 760-765.
    [36] Lu, Yi-Hsien, et al. "Novel sub-10-nm gate-all-around Si nanowire channel poly-Si TFTs with raised source/drain." Electron Device Letters, IEEE 32.2, 2011: 173-175.
    [37] Park, Jong-Tae, and Jean-Pierre Colinge. "Multiple-gate SOI MOSFETs: device design guidelines." Electron Devices, IEEE Transactions on 49.12, 2002: 2222-2229.
    [38] Suk, Sung Dae, et al. "Gate-all-around twin silicon nanowire SONOS memory."VLSI Technology, 2007 IEEE Symposium on. IEEE, 2007.
    [39] Larrieu, Guilhem, and Emmanuel Dubois. "Schottky-barrier source/drain MOSFETs on ultrathin SOI body with a tungsten metallic midgap gate."Electron Device Letters, IEEE 25.12, 2004: 801-803.
    [40] Hubert, A., et al. "A stacked SONOS technology, up to 4 levels and 6nm crystalline nanowires, with gate-all-around or independent gates (Φ-Flash), suitable for full 3D integration." Electron Devices Meeting (IEDM), 2009 IEEE International. IEEE, 2009.
    [41] Yeo, Kyoung Hwan, et al. "Gate-all-around single silicon nanowire MOSFET with 7 nm width for SONOS NAND flash memory." VLSI Technology, 2008 Symposium on. IEEE, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE