研究生: |
魏 敏 Wei, Min |
---|---|
論文名稱: |
透過數據標記系統改變線上政治討論留言主題 Changing Political Discussion by Data Annotation Application |
指導教授: |
曾元琦
Tseng, Yuan-Chi |
口試委員: |
謝同濟
Hsieh, Gary 董芳武 Dong, Fang-Wu |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 服務科學研究所 Institute of Service Science |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | 資料視覺化 、政治討論 |
外文關鍵詞: | Data Visualization, Political Discussion |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因應近幾年的資訊爆炸,新聞媒體大量使用資料視覺化(Data Visualization)的新聞專題作為傳播的媒介,隨著媒體數位化,互動資料專題變成一個新興的載體幫助閱讀者去閱讀數據並發現數據中新的洞見、並用來說服閱讀者接受推廣的觀點,引發政治討論跟影響力。
本研究透過設計新的數據討論系統讓閱讀者可以更理性的基於討論數據進行討論,希望改善政治討論對風格,並透過文字探勘與主題分析來分析閱讀者對資料視覺化的看法。本研究落實於台灣線上政治討論場域,初步發現,透過數據備註與拆分的設計可以改善閱讀者的留言風格,讓留言內容更加理性、多元,希望提供未來在資料視覺化的討論互動設計上新的解決方法,以促進線上政治討論的討論良性發展,改善社會氛圍。
In response to the information overload in recent years, the news media used a lot of Data Visualization news as the medium. With the digitalization of the media, the interactive data visualization became an emerging medium to help readers read, discover data, new insights and use to convincing readers to accept the idea, therefore leading to political discussion and influence.
The study, through the design of a new data discussion system, allows readers to discuss more rationally based on discussion data, hoping to improve the style of political discussion, and analyze the reader's perception of data visualization through text exploration and theme analysis. This study was implemented in the online political discussion field in Taiwan. It was initially found that the design of data notes and splits can improve the reader's message style, make the message content more rational and diverse, and hope to provide future interactive design of data visualization, that develop better online political discussions and improve the social atmosphere.
Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of economic perspectives, 31(2), 211-36.
Boehner, K., & DiSalvo, C. (2016, May). Data, design and civics: An exploratory study of civic tech. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 2970-2981). ACM.
Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: the self-assessment manikin and the semantic differential. Journal of behavior therapy and experimental psychiatry, 25(1), 49-59.
Conlen, M., & Heer, J. (2018, October). Idyll: A Markup Language for Authoring and Publishing Interactive Articles on the Web. In UIST (pp. 977-989).
Ellis, S. E., & Groth, D. P. (2004, May). A collaborative annotation system for data visualization. In Proceedings of the working conference on Advanced visual interfaces (pp. 411-414). ACM.
Gray, J., Chambers, L., & Bounegru, L. (2012). The data journalism handbook: how journalists can use data to improve the news. " O'Reilly Media, Inc.".
Heer, J., & Shneiderman, B. (2012). Interactive dynamics for visual analysis. Queue, 10(2), 30.
Ou, C. X., & Sia, C. L. (2010). Consumer trust and distrust: An issue of website design. International Journal of Human-Computer Studies, 68(12), 913-934.
Papacharissi, Z. (2004). Democracy online: Civility, politeness, and the democratic potential of online political discussion groups. New media & society, 6(2), 259-283.
Ryu, S., Ho, S. H., & Han, I. (2003). Knowledge sharing behavior of physicians in hospitals. Expert Systems with applications, 25(1), 113-122.
Sutton, Jeannette, et al. "A cross-hazard analysis of terse message retransmission on Twitter." Proceedings of the National Academy of Sciences 112.48 (2015): 14793-14798.
The issues 2020 Democrats are running on, according to their social media (https://washingtonpost.com/graphics/politics/policy-2020/priorities-issues/?utm_term=.50ed6f3e816b).
Washinton Post Graphics 2018 (https://www.washingtonpost.com/graphics/2018/ns/best-graphics/?noredirect=on&utm_term=.384c19292d83).
2018: The Year in Visual Stories and Graphics (https://www.nytimes.com/interactive/2018/us/2018-year-in-graphics.html).