研究生: |
林哲男 Lin, Zhe-Nan |
---|---|
論文名稱: |
以時間關係擴充故事素材模型 Extending Fabula Model with Temporal Relation |
指導教授: |
蘇豐文
Soo, Von-Wun |
口試委員: |
蘇豐文
Soo, Von-Wun 劉瑞瓏 Liu, Rey-Long 朱宏國 Chu, Hung-Kuo |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 48 |
中文關鍵詞: | 故事素材 、時間關係 、故事 |
外文關鍵詞: | Fabula, Temporal relation, Storytelling |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前已經有許多研究嘗試讓電腦像人類一樣說故事,但是對於故事本身仍然沒有一個完整且結構化的定義。敘事學家建議一個故事應該分為三層:故事素材層、情節層和表現層,而Swartjes為故事素材層定義了初步的框架。然而,這個框架只定義了六種基本元素和四種因果關係,仍然缺少許多說故事時必要的資訊,例如元素間的時間關係。
在本文中,我們在原本的故事素材模型上定義了元素間的時間關係,並且提出一組規則,用來判斷在什麼條件下應該在兩個元素之間加入時間關係。最後,我們利用一種類似深度優先搜尋法(DFS)的演算法將基於原本模型的故事素材和加入時間關係的故事素材轉成人類能閱讀的文章,並讓一般觀眾來評判那個故事素材產生的故事更容易理解。得到的結果是:從加入時間關係的故事素材產生的文章都得到較高的評價,而且對這些文章的意見也較為集中。
Nowadays, there are many researches trying to make computers tell stories. But there is no complete and structural definition for stories. The narrative theorists suggested that a story should be divided into three layers: fabula, lot, and presentation. And Swartjes offered an initial framework for the fabula layer. However, this framework only define six basic elements and four causal relations and still lack a lot of information that is necessary for storytelling, like the temporal relation between two elements.
In this thesis, we define the temporal relation between two elements on original fabula model and construct a set of rules, which are used to determine under what condition we should join the temporal relation between two elements. Finally, we use an algorithm which is similar to Depth-first search (DFS) to transform fabula instance based on original model and instance with temporal relation into human-readable articles. And we let general viewers judge which article is more understandable. The results are that the articles from fabula instance with temporal relations get higher scores, and the opinions to these articles are more centralized.
1. Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11), 832-843.
2. Bal, M. (1997). Narratology: Introduction to the theory of narrative. Univ of Toronto Pr.
3. Bui, V., Abbbass, H., & Bender, A. (2010). Evolving stories: Grammar evolution for automatic plot generation. Evolutionary Computation (CEC), 2010 IEEE Congress on. IEEE.
4. Chang, H., & Soo, V. (2008). Simulation-based story generation with a theory of mind. Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment International Conference (AIIDE 2008).
5. Chang, H., & Soo, V. (2009). Planning-Based Narrative Generation in Simulated Game Universes. Computational Intelligence and AI in Games, IEEE Transactions on, 1(3), 200-213.
6. Chang, H. (2010). "Emergent Narrative Generation with Social Planning Agents." Dissertation in Nation Tsing-Hua University 2010.
7. Gervás, P., Díaz-Agudo, B., Peinado, F., & Hervás, R. (2005). Story plot generation based on CBR. Knowledge-Based Systems, 18(4), 235-242.
8. Mateas, M., & Stern, A. (2003). Façade: An experiment in building a fully-realized interactive drama. Game Developers Conference, Game Design track.
9. Mateas, M., & Stern, A. (2005). Procedural authorship: A case-study of the interactive drama Façade. Digital Arts and Culture (DAC).
10. Mueller, E. T. (2006, January 19). Commonsense reasoning. Morgan Kaufmann.
11. Swartjes, I. (2006). The plot thickens: bringing structure and meaning into automated story generation.
12. Swartjes, I., & Theune, M. (2006). A Fabula model for emergent narrative. Technologies for Interactive Digital Storytelling and Entertainment, 49-60.
13. Oinonen, K., Theune, M., Nijholt, A., & Uijlings, J. (2006). Designing a story database for use in automatic story generation. Entertainment Computing-ICEC 2006, 298-301.
14. Porteous, J., Teutenberg, J., Charles, F., & Cavazza, M. (2011). Controlling narrative time in interactive storytelling. Proc. of 10th Int. Conf. on Autonomous Agents and MultiAgent Systems (AAMAS 2011).
15. Riedl, M. O. (2003). Actor conference: character-focused narrative planning.
16. Wang, K., Bui, V., & Abbass, H. (2010). Evolving stories: tree adjoining grammar guided genetic programming for complex plot generation. Simulated Evolution and Learning, 135-145.