研究生: |
陳以潔 Chen, Yi-Chieh |
---|---|
論文名稱: |
多波束正交分頻多工系統於六十秭赫室內通道之效能分析 Performance Analysis of Multibeam OFDM Systems over 60 GHz Indoor Channels |
指導教授: |
趙啟超
Chao, Chi-chao |
口試委員: |
蘇育德
吳文榕 楊谷章 林茂昭 趙啟超 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 78 |
中文關鍵詞: | 六十秭赫 、正交分頻多工 、多波束 |
外文關鍵詞: | 60 GHz, OFDM, multibeam |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
六十秭赫技術有廣大的無需執照頻寬,故有很大的潛能來支援現今室內無線的高傳輸速率需求。在分析上,我們使用IEEE 802.15.3c的通道模型來反映出六十秭赫在時間及空間上群聚的特性。又因為六十秭赫技術有很嚴重的路徑耗損,我們使用多波束正交分頻多工系統(Orthogonal Frequency-Division Multiplexing, OFDM)來彌補。透過適當地設計正交分頻多工系統,可以有效地消除多路徑效應。而使用多數據傳輸的多波束系統,可以增加整個系統的容量。
然而,六十秭赫技術的群聚效應會造成分析上的困難,故目前已知研究中,欠缺在六十秭赫室內通道的實用分析。在本論文中,藉由延伸密度函數(Extended Density Function, EDF)及等效的角度統計特性,我們可以在分析上得到精準的訊號干擾雜訊比(Signal-to-Interference-Plus-Noise Ratio, SINR)。另外,由訊號干擾雜訊比得到的容量邊界,則用來探討不同波束成型技術的性能。我們先討論雙波束成型技術,由分別考慮降低波束間的干擾技術及增加訊號能量的技術開始,我們提出了綜合兩者優點的混合波束成型技術,而此技術也可延伸至通用的多波束成型。最後,我們用數值的模擬來驗證分析結果。
[1] “Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,” Federal Comunications Commission, FCC First Report and Order, ET-Docket 98-153, Feb. 2002.
[2] R. C. Daniels and R. W. Heath, “60 GHz wireless communications: Emerging requirements and design recommendations,” IEEE Veh. Technol. Mag., vol. 2, no. 3, pp. 41–50, Sep. 2007.
[3] T. Baykas, et al., “IEEE 802.15.3c: the first IEEE wireless standard for data rates over 1 Gb/s,” IEEE Commun. Mag., vol. 49, no. 7, pp. 114–121, Jul. 2011.
[4] P. Smulders, “Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions,” IEEE Commun. Mag., vol. 40, no. 1, pp. 140–147, Jan. 2002.
[5] N. Guo, R. C. Qiu, S. S. Mo, and K. Takahashi, “60-GHz millimeter-wave radio: Principle, technology, and new results,” EURASIP J. Wireless Commun. and Networking, vol. 2007, no. 1, pp. 48–48, Jan. 2007.
[6] “IEEE standard for information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements. Part 15.3: Wireless medium access control (MAC) and physical layer (PHY)specifications for high rate wireless personal area networks (WPANs) amendment 2: Millimeter-wave-based alternative physical layer extension,” IEEE Std 802.15.3c-2009 (Amendment to IEEE Std 802.15.3-2003), pp. c1–187, Oct. 2009.
[7] S. Yoon, T. Jeon, and W. Lee, “Hybrid beam-forming and beam-switching for OFDM based wireless personal area networks,” IEEE J. Sel. Areas Commun., vol. 27, no. 8, pp. 1425–1432, Oct. 2009.
[8] C.-S. Choi, Y. Shoji, and H. Ogawa, “Implementation of an OFDM baseband with adaptive modulations to grouped subcarriers for millimeter-wave wireless indoor networks,” IEEE Trans. Consum. Electron., vol. 57, no. 4, pp. 1541–1549, Nov. 2011.
[9] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach to spatial filtering,” IEEE ASSP Mag., vol. 5, no. 2, pp. 4–24, Apr. 1988.
[10] D. J. Love and R. W. Heath Jr., “Equal gain transmission in multiple-input multiple-output wireless systems,” IEEE Trans. Commun., vol. 51, no. 7, pp. 1102–1110, Jul. 2003.
[11] D.-C. Oh and Y.-H. Lee, “An orthogonal multi-beam based MIMO scheme for multiuser wireless systems,” in Proc. IEEE Veh. Tech. Conf., Stockholm, Sweden, May 2005, pp. 919–923.
[12] S.-K. Yong, et al., “TG3c channel modeling sub-committee final report,” IEEE doc.:IEEE 802.15-07-0584-01-003c, Sep. 2010.
[13] O. Hoffmann, R. Kays, and R. Reinhold, “Coded performance of OFDM and SC PHY of IEEE 802.15.3c for different FEC types,” in Proc. IEEE Global Commun. Conf.
Workshops, Honolulu, HI, Dec. 2009, pp. 1–3.
[14] H. Singh, S.-K. Yong, J. Oh, and C. Ngo, “Principles of IEEE 802.15.3c: Multi-gigabit millimeter-wave wireless PAN,” in Proc. Int. Comput. Commun. and Networks Conf., San Francisco, CA, Aug. 2009, pp. 1–6.
[15] C. Yiu and S. Singh, “Empirical capacity of mmWave WLANs,” IEEE J. Sel. Areas Commun., vol. 27, no. 8, pp. 1479–1487, Oct. 2009.
[16] X. Zhu, A. Doufexi, and T. Kocak, “On the performance of IEEE 802.15.3c millimeterwave WPANs: PHY and MAC,” in Proc. 6th Conf. Wireless Advanced, London, UK, Jun. 2010, pp. 1–6.
[17] T. V. Nguyen, E. Masry, and L. B. Milstein, “Channel model and performance analysis of QAM multiple antenna systems at 60-GHz in the presence of human activity,” in Proc. IEEE Global Commun. Conf., Houston, TX, Dec. 2011, pp. 1–6.
[18] A. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE J. Sel. Areas Commun., vol. 5, no. 2, pp. 128–137, Feb. 1987.
[19] Q. H. Spencer, B. D. Jeffs, M. A. Jensen, and A. L. Swindlehurst, “Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel,” IEEE J. Sel. Areas Commun., vol. 18, no. 3, pp. 347–360, Mar. 2000.
[20] Y. Gao and M. Schubert, “Group-oriented beamforming for multi-stream multicasting based on quality-of-service requirements,” in Proc. IEEE Computational Advances in Multi-Sensor Adaptive Processing, Puerto Vallarta, Mexico, Dec. 2005, pp. 193–196.
[21] A. Oborina, M. Moisio, and V. Koivunen, “Performance of mobile MIMO OFDM systems with application to UTRAN LTE downlink,” to appear in IEEE Trans. Wireless Commun.
[22] J.-Y. Chang, “Performance analysis of multiband OFDM systems over generic ultrawideband channels,” M.S. thesis, Inst. Commun. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan, 2008.
[23] J.-Y. Chang, W.-D. Wu, and C.-C. Chao, “An analytical framework for ultra-wideband communications over IEEE 802.15.4a channels,” in Proc. IEEE Int. Symp. Inform. Theory, Toronto, Canada, Jul. 2008, pp. 2757–2761.
[24] W.-D. Wu, C.-C. Lee, C.-H. Wang, and C.-C. Chao, “Signal-to-interference-plusnoise ratio analysis for direct-sequence ultra-wideband systems in generalized Saleh-Valenzuela channels,” IEEE J. Sel. Topics Signal Process., vol. 1, no. 3, pp. 483–497, Oct. 2007.
[25] W.-D. Wu, C.-H. Wang, C.-C. Chao, and K. Witrisal, “On parameter estimation for ultra-wideband channels with clustering phenomenon,” in Proc. IEEE Veh. Tech. Conf., Calgary, Canada, Sep. 2008, pp. 1–5.
[26] E. P. C. Kao, An Introduction to Stochastic Processes. Belmont, CA: Duxbury Press, 1997.
[27] H.-Y. Hsu, “Performance analysis of OFDM systems over 60 GHz indoor channels,” M.S. thesis, Inst. Commun. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan, 2011.