簡易檢索 / 詳目顯示

研究生: 李彥輝
Li, Yan-Huei
論文名稱: 直接接觸薄膜蒸餾: 疏水/親水複合膜之數值模擬與探討
Hydrophobic/hydrophilic composite membranes of direct contact membrane distillation : Numerical simulation and discussion
指導教授: 許文震
Sheu, Wen-Jenn
口試委員: 王訓忠
Wong, Shwin-Chung
李隆正
Lee, Lung-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 120
中文關鍵詞: 直接接觸薄膜蒸餾法疏水/親水複合膜疏水/親水疊合膜紐賽數關係式數值模擬
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年各國紛紛投入海水淡化技術的開發與研究,希望能因應不斷成長的用水需求。隨著全球暖化議題的增溫與化石燃料價格的成長,低階廢熱(low grade waste heat)與再生能源的使用逐漸受到人們的重視,這使得薄膜蒸餾法(membrane distillation, MD),一項可以利用廢熱與再生能源的淡化技術,受到了關注。本文將研究薄膜蒸餾法的其中一種,直接接觸薄膜蒸餾(direct contact membrane distillation, DCMD)搭配疏水/親水複合膜的熱質傳現象。
    本研究針對單層疏水膜、疏水/親水複合膜依據不同的理論分別撰寫Fortran程式進行模擬,並與實驗室前人的實驗數據進行比較,最後調整參數以了解疊合式複合膜的可行性。依據Schofiled’s model所撰寫的模擬程式配合特定紐賽數關係式(Nusselt number correlation)其單層疏水預測結果與實驗誤差最大約18.93%,平均誤差約7.16%。疊合膜預測結果與實驗誤差最大約22.79%,平均誤差約10.25%。


    In recent years, many countries have made a lot of efforts to develop sea water desalination technology for the growing demand of water. At the same time, the usage of low grade waste heat and renewable energy is paid more attention because of the global warming issues and the growing prices of fossil fuels. Therefore, the membrane distillation, which is a desalination technology used with low grade waste heat or renewable energy, is more attractive now. This thesis investigates the heat and mass transport phenomena of direct membrane distillation (DCMD), which is one of varied membrane distillation methods.
    In this thesis, we develop the computer programs of Fortran to simulate the operation of DCMD within single hydrophobic membranes, or within composite membranes, and then compare the simulation results with other researchers’ work. The deviations of numerical results from experimental data for single hydrophobic membranes are below 18.93% (maximum error), and 7.16% in average. For stacked membranes, the deviations are 22.79% in maximum, and 10.25% in average.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 符號說明 X 第一章 緒論 1 1-1 水資源概述 1 1-2 DESALINATION PROCESS 4 1-3 薄膜蒸餾法簡介 10 1-4 複合膜與疊合式複合膜簡介 15 1-5 研究方向與目標 16 1-6 論文架構 16 第二章 文獻回顧 17 2-1 商用淡化技術簡介 17 2-1-1 多效蒸餾法 18 2-1-2 多級閃化法 20 2-1-3 蒸氣壓縮法 21 2-1-4 逆滲透 22 2-1-5 電透析 23 2-2 薄膜蒸餾法(MD) 25 2-3 薄膜簡介 26 2-3-1 薄膜分類概述 27 2-3-2 MD對薄膜的要求 30 2-3-3 MD相關的薄膜特性 34 2-4 直接接觸式薄膜蒸餾法(DCMD) 39 2-4-1 DCMD傳輸理論回顧 39 2-4-2 DCMD複合膜模擬研究 41 第三章 理論模擬 42 3-1 DCMD傳輸理論與模擬方式 42 3-1-1 蒸發現象與蒸汽壓 42 3-1-2 DCMD熱質傳與操作條件 44 3-1-3 溫度極化現象與濃度極化現象 46 3-1-4 DCMD的熱傳模型 48 3-1-5 DCMD薄膜質傳模型 58 3-2 模擬程式 66 第四章 實驗數據對照與結果討論 71 4-1 單層疏水膜的實驗與模擬對照 71 4-1-1 單層疏水實驗設置與模擬參數 71 4-1-2 單層疏水模擬結果討論 72 4-2 疊合式多層膜的實驗與模擬對照 88 4-2-1 疊合膜實驗設置與模擬參數 89 4-2-2 疊合膜結果討論 90 4-3 設置參數的改變與趨勢 105 4-3-1 改變流速之影響 105 4-3-2 複合膜的親水層厚度、熱傳導性改變 107 4-3-3 複合膜固定總厚度下,改變疏水層厚度 110 第五章 結論與未來方向 113 5-1 結論 113 5-2 未來方向 114 參考文獻 116

    [1] USGS. Where is Earth's water located? Available: http://ga.water.usgs.gov/edu/earthwherewater.html
    [2] F. Macedonio, E. Drioli, A. A. Gusev, A. Bardow, R. Semiat, and M. Kurihara, "Efficient technologies for worldwide clean water supply," Chemical Engineering and Processing: Process Intensification, vol. 51, pp. 2-17, 2012.
    [3] USGS. Earth's water distribution. Available: http://ga.water.usgs.gov/edu/waterdistribution.html
    [4] IDA. IDA Desalination Yearbook. Available: http://www.desalyearbook.com/
    [5] J.-B. W. Ching-Yu Wang. Analysis and Evaluation of Taiwan Water Shortage Factors and Solution Strategies. Available: http://ccsenet.org/journal/index.php/ass/article/view/7599
    [6] J. Koschikowski. (2011). Water Desalination:When and Where Will it Make Sense? Available: http://ec.europa.eu/dgs/jrc/downloads/jrc_aaas2011_energy_water_koschikowski.pdf
    [7] WQA. Salt water. Available: http://www.wqa.org/glossary.cfm?gl=1874
    [8] WHO. (1996). Total dissolved solids in Drinking-water. Available: http://www.who.int/water_sanitation_health/dwq/chemicals/tds.pdf
    [9] R. W. Baker, Membrane technology and applications, 2nd ed. Chichester ; New York: J. Wiley, 2004.
    [10] T. Mezher, H. Fath, Z. Abbas, and A. Khaled, "Techno-economic assessment and environmental impacts of desalination technologies," Desalination, vol. 266, pp. 263-273, 2011.
    [11] (2009). ESCWA (Economic and Social Commission for Western Asia). Available: http://www.escwa.un.org/information/publications/edit/upload/sdpd-09-4.pdf
    [12] A. Cipollina, G. Micale, and L. Rizzuti, Seawater desalination : conventional and renewable energy processes. Heidelberg ; New York: Springer, 2009.
    [13] B. Sauvet-Goichon, "Ashkelon desalination plant — A successful challenge," Desalination, vol. 203, pp. 75-81, 2007.
    [14] T. Younos, "The Economics of Desalination," Journal of Contemporary Water Research & Education, vol. 132, pp. 39-45, 2005.
    [15] B. Peñate and L. García-Rodríguez, "Current trends and future prospects in the design of seawater reverse osmosis desalination technology," Desalination, vol. 284, pp. 1-8, 2012.
    [16] 臺灣電力公司. 年產銷概況. Available: http://www.taipower.com.tw/left_bar/jing_ying_ji_xiao/year_production.htm
    [17] M. E. Findley, "Vaporization through Porous Membranes," Industrial & Engineering Chemistry Process Design and Development, vol. 6, pp. 226-230, 1967/04/01 1967.
    [18] S. Al-Obaidani, E. Curcio, F. Macedonio, G. Di Profio, H. Al-Hinai, and E. Drioli, "Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation," Journal of Membrane Science, vol. 323, pp. 85-98, 2008.
    [19] K. W. Lawson and D. R. Lloyd, "Membrane distillation," Journal of Membrane Science, vol. 124, pp. 1-25, 1997.
    [20] M. S. El-Bourawi, Z. Ding, R. Ma, and M. Khayet, "A framework for better understanding membrane distillation separation process," Journal of Membrane Science, vol. 285, pp. 4-29, 2006.
    [21] E. K. Summers, H. A. Arafat, and J. H. Lienhard V, "Energy efficiency comparison of single-stage membrane distillation (MD) desalination cycles in different configurations," Desalination, vol. 290, pp. 54-66, 2012.
    [22] M. Khayet, T. Matsuura, and J. I. Mengual, "Porous hydrophobic/hydrophilic composite membranes: Estimation of the hydrophobic-layer thickness," Journal of Membrane Science, vol. 266, pp. 68-79, 2005.
    [23] L. K. Wang, Membrane and desalination technologies. New York, NY: Humana Press, 2011.
    [24] A. D. Khawaji, I. K. Kutubkhanah, and J. M. Wie, "Advances in seawater desalination technologies," Desalination, vol. 221, pp. 47-69, 2008.
    [25] S. Kalogirou, Solar energy engineering : processes and systems. Burlington, MA: Elsevier/Academic Press, 2009.
    [26] B. R. Bodell, "Silicone rubber vapor diffusion in saline water distillation," United States Patent 285032, 1963.
    [27] A. K. Pabby, S. S. H. Rizvi, and A. M. Sastre, Handbook of membrane separations : chemical, pharmaceutical, food, and biotechnological applications. Boca Raton: CRC Press, 2009.
    [28] D. Y. Cheng, "Method and apparatus for distillation," United States Patent 4265713, 1981.
    [29] D. Y. Cheng and S. J. Wiersma, "Composite membrane for a membrane distillation system," United States Patent 4316772, 1982.
    [30] D. Y. Cheng and S. J. Wiersma, "Composite membrane for a membrane distillation system," United States Patent 4419242, 1983.
    [31] R. W. Schofield, A. G. Fane, and C. J. D. Fell, "Heat and mass transfer in membrane distillation," Journal of Membrane Science, vol. 33, pp. 299-313, 1987.
    [32] R. W. Schofield, A. G. Fane, and C. J. D. Fell, "Gas and vapour transport through microporous membranes. I. Knudsen-Poiseuille transition," Journal of Membrane Science, vol. 53, pp. 159-171, 1990.
    [33] R. W. Schofield, A. G. Fane, and C. J. D. Fell, "Gas and vapour transport through microporous membranes. II. Membrane distillation," Journal of Membrane Science, vol. 53, pp. 173-185, 1990.
    [34] R. W. Schofield, A. G. Fane, C. J. D. Fell, and R. Macoun, "Factors affecting flux in membrane distillation," Desalination, vol. 77, pp. 279-294, 1990.
    [35] M. Khayet and T. Matsuura, "Chapter 1 - Introduction to Membrane Distillation," in Membrane Distillation, ed Amsterdam: Elsevier, 2011, pp. 1-16.
    [36] M. Khayet, "Membrane Distillation," in Advanced membrane technology and applications, ed Hoboken, N.J.: Wiley, 2008, pp. 297-369.
    [37] M. Khayet, "Membranes and theoretical modeling of membrane distillation: A review," Advances in Colloid and Interface Science, vol. 164, pp. 56-88, 2011.
    [38] N. N. Li, Advanced membrane technology and applications. Hoboken, N.J.: Wiley, 2008.
    [39] M. Gryta and M. Barancewicz, "Influence of morphology of PVDF capillary membranes on the performance of direct contact membrane distillation," Journal of Membrane Science, vol. 358, pp. 158-167, 2010.
    [40] M. Khayet and T. Matsuura, Membrane distillation : principles and applications. Oxford: Elsevier, 2011.
    [41] S. Adnan, M. Hoang, H. Wang, and Z. Xie, "Commercial PTFE membranes for membrane distillation application: Effect of microstructure and support material," Desalination, vol. 284, pp. 297-308, 2012.
    [42] S. Srisurichan, R. Jiraratananon, and A. G. Fane, "Mass transfer mechanisms and transport resistances in direct contact membrane distillation process," Journal of Membrane Science, vol. 277, pp. 186-194, 2006.
    [43] K. W. Lawson and D. R. Lloyd, "Membrane distillation. II. Direct contact MD," Journal of Membrane Science, vol. 120, pp. 123-133, 1996.
    [44] J. Phattaranawik and R. Jiraratananon, "Direct contact membrane distillation: effect of mass transfer on heat transfer," Journal of Membrane Science, vol. 188, pp. 137-143, 2001.
    [45] C. Fernández-Pineda, M. A. Izquierdo-Gil, and M. C. Garcı́a-Payo, "Gas permeation and direct contact membrane distillation experiments and their analysis using different models," Journal of Membrane Science, vol. 198, pp. 33-49, 2002.
    [46] J. Phattaranawik, R. Jiraratananon, and A. G. Fane, "Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation," Journal of Membrane Science, vol. 215, pp. 75-85, 2003.
    [47] V. Soni, J. Abildskov, G. Jonsson, and R. Gani, "A general model for membrane-based separation processes," Computers and Chemical Engineering, vol. 33, pp. 644-659, 2009.
    [48] S. Bonyadi and T. S. Chung, "Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic–hydrophobic hollow fiber membranes," Journal of Membrane Science, vol. 306, pp. 134-146, 2007.
    [49] M. Qtaishat, M. Khayet, and T. Matsuura, "Guidelines for preparation of higher flux hydrophobic/hydrophilic composite membranes for membrane distillation," Journal of Membrane Science, vol. 329, pp. 193-200, 2009.
    [50] N. D. Jespersen, J. E. Brady, and A. Hyslop, Chemistry : the molecular nature of matter, 6th ed. Hoboken, NJ: Wiley, 2012.
    [51] R. Chang, General chemistry : the essential concepts, 5th ed. Boston: McGraw-Hill, 2008.
    [52] L. Martínez and J. M. Rodríguez-Maroto, "Membrane thickness reduction effects on direct contact membrane distillation performance," Journal of Membrane Science, vol. 312, pp. 143-156, 2008.
    [53] M. Qtaishat, T. Matsuura, B. Kruczek, and M. Khayet, "Heat and mass transfer analysis in direct contact membrane distillation," Desalination, vol. 219, pp. 272-292, 2008.
    [54] J. Phattaranawik, R. Jiraratananon, and A. G. Fane, "Heat transport and membrane distillation coefficients in direct contact membrane distillation," Journal of Membrane Science, vol. 212, pp. 177-193, 2003.
    [55] L. Martı́nez-Dı́ez and M. I. Vázquez-González, "Temperature and concentration polarization in membrane distillation of aqueous salt solutions," Journal of Membrane Science, vol. 156, pp. 265-273, 1999.
    [56] M. Gryta, M. Tomaszewska, and A. W. Morawski, "Membrane distillation with laminar flow," Separation and Purification Technology, vol. 11, pp. 93-101, 1997.
    [57] M. Gryta and M. Tomaszewska, "Heat transport in the membrane distillation process," Journal of Membrane Science, vol. 144, pp. 211-222, 1998.
    [58] R. K. Shah and A. L. London, Laminar flow forced convection in ducts : a source book for compact heat exchanger analytical data. New York: Academic Press, 1978.
    [59] A. S. Kim, "A two-interface transport model with pore-size distribution for predicting the performance of direct contact membrane distillation (DCMD)," Journal of Membrane Science, vol. 428, pp. 410-424, 2013.
    [60] E. A. Mason and A. P. Malinauskas, Gas transport in porous media : the dusty-gas model. Amsterdam ; New York: Elsevier, 1983.
    [61] L. Martı́nez, F. J. Florido-Dı́az, A. Hernández, and P. Prádanos, "Estimation of vapor transfer coefficient of hydrophobic porous membranes for applications in membrane distillation," Separation and Purification Technology, vol. 33, pp. 45-55, 2003.
    [62] ImageJ. Available: http://imagej.nih.gov/ij/index.html
    [63] 劉菊蓮, "直接接觸薄膜蒸餾之熱質傳研究," 碩士論文, 動力機械學系, 國立清華大學, 2009.
    [64] 林瑋亭, "直接接觸薄膜蒸餾:水蒸氣質量流率與疏水/親水複合膜特性之關係研究," 碩士論文, 動力機械學系, 國立清華大學, 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE