簡易檢索 / 詳目顯示

研究生: 蕭仱琁
Hsiao, Chien-Hsuan
論文名稱: 硫化鎘粒子之纖鋅礦與閃鋅礦結構的控制和合成硫化鎘菱形十二面體其尺寸的光學特性
Control of Wurtzite and Zinc Blende Phased CdS Crystals and Synthesis of CdS Rhombic Dodecahedra Showing Size-Dependent Optical Properties
指導教授: 黃暄益
Huang, Hsuan-Yi
口試委員: 徐雍鎣
Hsu, Yung-Jung
楊東翰
Yang, Tung-Han
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 83
中文關鍵詞: 硫化鎘菱形十二面體光學效應閃鋅礦結構
外文關鍵詞: Cadmium sulfide, Rhombic dodecahedra, Optical properties, Zinc Blende Phased
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們使用較低溫且環保的方式在水相中合成硫化鎘奈米晶體,利用粉末式X射線繞射分析發現硫化鎘奈米晶體具有相轉換情形的發生。其結構可由六方晶系轉換成立方晶系,並深入探討在含有鹵素離子及酸濃度改變情況下其相轉換程度。之後成功合成出尺寸可調控的菱形十二面體硫化鎘奈米粒子,尺寸範圍介於64奈米至150奈米之間。在粉末式X射線繞射分析中,得知其具有面心立方晶系。硫化鎘菱形十二面體在掃描式電子顯微鏡及穿透式電子顯微鏡的觀察下,其形狀邊角完整且表面平滑。此外,在選區繞射圖,我們可以再次驗證合成出來的奈米粒子為具有{110}單一晶面的硫化鎘晶體。在紫外光可見光漫反射光譜圖中,可以觀察到硫化鎘菱形十二面體在光學上有尺寸效應,硫化鎘菱形十二面體的能隙會隨著尺寸增加而有微略紅位移的現象。相比於大顆的硫化鎘菱形十二面體,尺寸為64奈米的硫化鎘菱形十二面體擁有較大的活性表面積。


    We have synthesized CdS nanocrystals at relatively low temperatures in aqueous solutions. From XRD analysis, we can observe a crystal phase transformation from a hexagonal wurtzite phase to a cubic zinc blende phase by tuning halide ions and pH values. Size-tunable CdS rhombic doecahedra (RDs) ranging from 64 nm to 150 nm have been synthesized and identified through XRD to have face-centered cubic lattices. They have sharp edges and smooth surfaces. SAED patterns indicate that the synthesized CdS RDs are bound by the {110} facets. UV–vis DRS results reveal that the CdS RDs still show size-dependent optical properties. The band gap of CdS RDs is slightly red-shifted as the size of CdS nanoparticles increase. Compared to bigger CdS RDs, the 64 nm CdS RDs have a larger active surface area.

    論文摘要 I Abstract II Acknowledgement III Table of Contents IV List of Figures VIII List of Schemes XIV List of Table XV 1.Introduction 1 1.1 Size- and Facet-Dependent Properties of Semiconductor Crystals 1 1.1.1 Facet-Dependent Electrical Conductivity Properties of Semiconductors 1 1.1.2 Facet- and Size-Dependent Optical Properties of Semiconductors 6 1.2 Cadmium Sulfide (CdS) 10 1.2.1 Structural Transformation of Cadmium Sulfide from Zinc Blende to Wurtzite 10 1.2.2 Synthesis of CdS Nanoparticles in Organic Solutions 13 1.2.3 Synthesis of CdS Nanoparticles in Aqueous Solutions 17 Motivation 21 2 Experimental Section 22 2.1 Chemicals 22 2.2 Synthesis of CdS Nanoparticles by Changing the Cadmium Precursor and Acid 22 2.3 Multiple Methods to Synthesize CdS Nanoparticles with a Specific Structure 24 2.3.1 Halide-Induced Structural Control in CdS Nanoparticles 25 2.3.2 Synthesis of CdS Nanoparticles with CTA+ and Halide Ions 26 2.4 Synthesis of Wurtzite to Zinc Blende CdS Nanoparticles by Adjusting the Nitric Acid Amount 26 2.5 Synthesis of Zinc Blende Structured CdS Nanoparticles by Controlling the Heating Temperature 28 2.6 Growth of Size-Tunable CdS Rhombic Dodecahedra 29 2.7 Electrical Conductivity Measurements 30 2.8 Electrochemical Measurements 30 3 Instrumentation 33 4 Results and Discussion 35 4.1 CdS Nanoparticles by Changing Different Cadmium Precursors and Acids 36 4.2 Halide-Induced Structural Control and Formation Mechanism of CdS Nanoparticles 39 4.2.1 Structural Control of CdS Nanoparticles with Halide Ions 39 4.2.2 Hypothesized Formation Mechanism of CdS Nanoparticles with Halide Ions 44 4.3 Acid-Induced Structural Transformation of CdS Nanoparticles 47 4.4 CdS Rhombic Dodecahedra with a Zinc-Blende Structure 53 4.4.1 Growth of CdS Rhombic Dodecahedra 53 4.4.2 Characterization of Size-Tunable CdS Rhombic Dodecahedra. 57 4.4.3 Optical Size Effects of CdS Rhombic Dodecahedra 61 4.5 Electrochemistry Analysis of CdS Rhombic Dodecahedra 66 4.5.1 Mott‒Schottky Plots of Conduction Band Position 66 4.5.2 Electrochemical Surface Area (ECSA) and Transient Photocurrent Response 70 5 Conclusion 73 References 74

    1.Huang, M. H., Facet-Dependent Optical Properties of Semiconductor Nanocrystals. Small 2019, 15, 1804726.
    2.Huang, M. H., Semiconductor Nanocrystals Possessing Broadly Size- and Facet-Dependent Optical Properties. J. Chin. Chem. Soc. 2021, 68, 45-50.
    3.Huang, M. H.; Naresh, G.; Chen, H.-S., Facet-Dependent Electrical, Photocatalytic, and Optical Properties of Semiconductor Crystals and Their Implications for Applications. ACS Appl. Mater. Interfaces 2018, 10, 4-15.
    4.Gan, X. Y.; Keller, E. L.; Warkentin, C. L.; Crawford, S. E.; Frontiera, R. R.; Millstone, J. E., Plasmon-Enhanced Chemical Conversion Using Copper Selenide Nanoparticles. Nano Lett. 2019, 19, 2384-2388.
    5.Chiu, M.-S.; Lin, C.-C.; Lee, A.-T.; Huang, Y.-C.; Huang, M. H., Aqueous-Phase Synthesis of Size-Tunable PbSe Nanocubes at Room Temperature for Optical Property Characterization. Chem. Eur. J. 2019, 25, 367-372.
    6.Li, J.; Cushing, S. K.; Bright, J.; Meng, F.; Senty, T. R.; Zheng, P.; Bristow, A. D.; Wu, N., Ag@Cu2O Core-Shell Nanoparticles as Visible-Light Plasmonic Photocatalysts. ACS Catal. 2013, 3, 47-51.
    7.Hsieh, P.-L.; Madasu, M.; Hsiao, C.-H.; Peng, Y.-W.; Chen, L.-J.; Huang, M. H., Facet-Dependent and Adjacent Facet-Related Electrical Conductivity Properties of SrTiO3 Crystals. J. Phys. Chem. C 2021, 125, 10051-10056.
    8.Hsieh, P.-L.; Naresh, G.; Huang, Y.-S.; Tsao, C.-W.; Hsu, Y.-J.; Chen, L.-J.; Huang, M. H., Shape-Tunable SrTiO3 Crystals Revealing Facet-Dependent Optical and Photocatalytic Properties. J. Phys. Chem. C 2019, 123, 13664-13671.
    9.Chu, C.-Y.; Huang, M. H., Facet-Dependent Photocatalytic Properties of Cu2O Crystals Probed by Using Electron, Hole and Radical Scavengers. J. Mater. Chem. A 2017, 5, 15116-15123.
    10.Liang, T.-Y.; Chan, S.-J.; Patra, A. S.; Hsieh, P.-L.; Chen, Y.-A.; Ma, H.-H.; Huang, M. H., Inactive Cu2O Cubes Become Highly Photocatalytically Active with Ag2S Deposition. ACS Appl. Mater. Interfaces 2021, 13, 11515-11523.
    11.Chang, C.-H.; Madasu, M.; Wu, M.-H.; Hsieh, P.-L.; Huang, M. H., Formation of Size-Tunable CuI Tetrahedra Showing Small Band Gap Variation and High Catalytic Performance towards Click Reactions. J. Colloid Interface Sci. 2021, 591, 1-8.
    12.Madasu, M.; Huang, M. H., Cu2O Polyhedra for Aryl Alkyne Homocoupling Reactions. Catal. Sci. Technol. 2020, 10, 6948-6952.
    13.Chen, Y.-J.; Chiang, Y.-W.; Huang, M. H., Synthesis of Diverse Ag2O Crystals and Their Facet-Dependent Photocatalytic Activity Examination. ACS Appl. Mater. Interfaces 2016, 8, 19672-19679.
    14.Hsieh, M.-S.; Su, H.-J.; Hsieh, P.-L.; Chiang, Y.-W.; Huang, M. H., Synthesis of Ag3PO4 Crystals with Tunable Shapes for Facet-Dependent Optical Property, Photocatalytic Activity, and Electrical Conductivity Examinations. ACS Appl. Mater. Interfaces 2017, 9, 39086-39093.
    15.Bi, Y.; Ouyang, S.; Umezawa, N.; Cao, J.; Ye, J., Facet Effect of Single-Crystalline Ag3PO4 Sub-Microcrystals on Photocatalytic Properties. J. Am. Chem. Soc. 2011, 133, 6490-6492.
    16.Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H., Facet-Dependent Electrical Conductivity Properties of Cu2O Crystals. Nano Lett. 2015, 15, 2155-2160.
    17.Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H., Facet-Dependent Electrical Conductivity Properties of PbS Nanocrystals. Chem. Mater. 2016, 28, 1574-1580.
    18.Huang, J.-Y.; Madasu, M.; Huang, M. H., Modified Semiconductor Band Diagrams Constructed from Optical Characterization of Size-Tunable Cu2O Cubes, Octahedra, and Rhombic Dodecahedra. J. Phys. Chem. C 2018, 122, 13027-13033.
    19.Chang, C.-H.; Madasu, M.; Wu, M.-H.; Hsieh, P.-L.; Huang, M. H., Formation of Size-Tunable CuI Tetrahedra Showing Small Band Gap Variation and High Catalytic Performance towards Click Reactions. J. Colloid Interface Sci. 2021, 591, 1-8.
    20.Huang, Y.-C.; Wu, S.-H.; Hsiao, C.-H.; Lee, A.-T.; Huang, M. H., Mild Synthesis of Size-Tunable CeO2 Octahedra for Band Gap Variation. Chem. Mater. 2020, 32, 2631-2638.
    21.Ke, W.-H.; Hsia, C.-F.; Chen, Y.-J.; Huang, M. H., Synthesis of Ultrasmall Cu2O Nanocubes and Octahedra with Tunable Sizes for Facet-Dependent Optical Property Examination. Small 2016, 12, 3530-3534.
    22.Thoka, S.; Lee, A.-T.; Huang, M. H., Scalable Synthesis of Size-Tunable Small Cu2O Nanocubes and Octahedra for Facet-Dependent Optical Characterization and Pseudomorphic Conversion to Cu Nanocrystals. ACS Sustain. Chem. Eng. 2019, 7, 10467-10476.
    23.Kalasad, M. N.; Rabinal, M. K.; Mulimani, B. G., Facile Synthesis of Bioconjugated Fluorescent CdS Nanoparticles of Tunable Light Emission. J. Phys. D: Appl. Phys. 2010, 43, 305301.
    24.Repins, I.; Contreras, M. A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins, C. L.; To, B.; Noufi, R., 19.9%-Efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor. Prog Photovolt 2008, 16, 235-239.
    25.She, H.; Li, L.; Zhou, H.; Wang, L.; Huang, J.; Wang, Q., Photocatalytic Activation of Saturated C-H Bond over the CdS Mixed-Phase under Visible Light Irradiation. Front. Chem. 2018, 6, 466.
    26.Xie, S.; Shen, Z.; Deng, J.; Guo, P.; Zhang, Q.; Zhang, H.; Ma, C.; Jiang, Z.; Cheng, J.; Deng, D.; Wang, Y., Visible Light-Driven C-H Activation and C-C Coupling of Methanol into Ethylene Glycol. Nat. Commun. 2018, 9, 1181.
    27.Zhang, N.; Yang, M.-Q.; Tang, Z.-R.; Xu, Y.-J., CdS–Graphene Nanocomposites as Visible Light Photocatalyst for Redox Reactions in Water: A Green Route for Selective Transformation and Environmental Remediation. J. Catal. 2013, 303, 60-69.
    28.Baig, U.; Gondal, M. A.; Dastageer, M. A.; Ansari, M. A.; Sajid, M.; Falath, W. S., Synthesis of Cadmium Sulfide-Tungsten Trioxide Nanocomposites for Photo-catalytic Degradation of Organic Pollutants and Growth Retardation of Waterborne Bacteria and Biofilms. Colloids Surf. A Physicochem. Eng. Asp. 2020, 606, 125423.
    29.Qin, Y.; Li, H.; Dong, H.; Ma, C.; Li, X.; Liu, X.; Liu, Y.; Li, C.; Yan, Y., Enhanced Photocatalytic Performance and Stability of Visible-Light-Driven Z-Scheme CdS/Ag/g-C3N4 Nanosheets Photocatalyst. New J. Chem. 2018, 42, 12437-12448.
    30.Liu, X.; Qin, Y.; Yan, Y.; Lv, P., The Fabrication of CdS/CoFe2O4/rGO Photocatalysts to Improve the Photocatalytic degradation performance under visible light. RSC Adv. 2017, 7, 40673-40681.
    31.Shi, Z.; Liu, J.; Lan, H.; Li, X.; Zhu, B.; Yang, J., Effect of CdS Shell Thickness on the Photocatalytic Properties of TiO2@CdS Core–Shell Nanorod Arrays. J. Mater. Sci. Mater. Electron. 2019, 30, 17682-17692.
    32.Che, H.; Che, G.; Jiang, E.; Liu, C.; Dong, H.; Li, C., A Novel Z-Scheme CdS/Bi3O4Cl Heterostructure for Photocatalytic Degradation of Antibiotics: Mineralization Activity, Degradation Pathways and Mechanism Insight. J Taiwan Inst Chem Eng 2018, 91, 224-234.
    33.Yang, H.; Huang, C.; Li, X.; Shi, R.; Zhang, K., Luminescent and Photocatalytic Properties of Cadmium Sulfide Nanoparticles Synthesized via Microwave Irradiation. Mater. Chem. Phys. 2005, 90, 155-158.
    34.Ghosh, A.; Paul, S.; Raj, S., Structural Phase Transformation from Wurtzite to Zinc-Blende in Uncapped CdS Nanoparticles. Solid State Commun 2013, 154, 25-29.
    35.Thakur, P.; Joshi, S. S.; Kapoor, S.; Mukherjee, T., Structural Phase Behavior and Vibrational Spectroscopic Studies of Biofunctionalized CdS Nanoparticles. Langmuir 2009, 25, 6334-40.
    36.Márquez-Marín, J.; Torres-Castanedo, C. G.; Torres-Delgado, G.; Aguilar-Frutis, M. A.; Castanedo-Pérez, R.; Zelaya-Ángel, O., Very Sharp Zinc Blende-Wurtzite Phase Transition of CdS Nanoparticles. Superlattices Microstruct. 2017, 102, 442-450.
    37.Torres-Castanedo, C. G.; Márquez-Marín, J.; Castanedo-Pérez, R.; Torres-Delgado, G.; Aguilar-Frutis, M. A.; Arias-Cerón, S.; Zelaya-Ángel, O., Optical Properties of CdS Nanocrystalline Thin Films in the Abrupt Phase Transition from Zinc Blende to Wurtzite. J. Mater. Sci. Mater. Electron. 2020, 31, 16561-16568.
    38.Ahmed, B.; Kumar, S.; Kumar, S.; Ojha, A. K., Shape Induced (Spherical, Sheets and Rods) Optical and Magnetic Properties of CdS Nanostructures with Enhanced Photocatalytic Activity for Photodegradation of Methylene Blue Dye under Ultra-Violet Irradiation. J. Alloys Compd. 2016, 679, 324-334.
    39.Saxena, N.; Kalsi, T.; Uttam, P.; Kumar, P., Morphological Evolution in Nanocrystalline CdS Thin Films from Flowers to Salt Rock Like Structures. Opt. Mater. 2018, 84, 625-630.
    40.Li, B.; Xu, J.; Chen, W.; Fan, D.; Kuang, Y.; Ye, Z.; Zhou, W.; Xie, H., Phase Transition and Thermoelastic Behavior of Cadmium Sulfide at High Pressure and High Temperature. J. Alloys Compd. 2018, 743, 419-427.
    41.Xiao, J.; Wen, B.; Melnik, R.; Kawazoe, Y.; Zhang, X., Phase Transformation of Cadmium Sulfide under High Temperature and High Pressure Conditions. Phys. Chem. Chem. Phys. 2014, 16, 14899-904.
    42.Ai, Z.; Zhao, G.; Zhong, Y.; Shao, Y.; Huang, B.; Wu, Y.; Hao, X., Phase Junction CdS: High Efficient and Stable Photocatalyst for Hydrogen Generation. Appl. Catal. B. 2018, 221, 179-186.
    43.Tai, G. a.; Zhou, J.; Guo, W., Inorganic Salt-Induced Phase Control and Optical Characterization of Cadmium Sulfide Nanoparticles. Nanotechnology 2010, 21, 175601.
    44.Zou, Y.; Li, D.; Yang, D., Shape and Phase Control of CdS Nanocrystals Using Cationic Surfactant in Noninjection Synthesis. Nanoscale Res. Lett. 2011, 6, 374.
    45.Warner, J. H.; Tilley, R. D., Synthesis and Self-Assembly of Triangular and Hexagonal CdS Nanocrystals. Adv. Mater. 2005, 17, 2997-3001.
    46.Puthussery, J.; Lan, A.; Kosel, T. H.; Kuno, M., Band-Filling of Solution-Synthesized CdS Nanowires. ACS Nano 2008, 2, 357-367.
    47.Voitekhovich, S. V.; Talapin, D. V.; Klinke, C.; Kornowski, A.; Weller, H., CdS Nanoparticles Capped with 1-Substituted 5-Thiotetrazoles: Synthesis, Characterization, and Thermolysis of the Surfactant. Chem. Mater. 2008, 20, 4545-4547.
    48.Wang, X.; Liu, M.; Zhou, Z.; Guo, L., Toward Facet Engineering of CdS Nanocrystals and Their Shape-Dependent Photocatalytic Activities. J. Phys. Chem. C 2015, 119, 20555-20560.
    49.Rempel, A. A.; Kozhevnikova, N. S.; Van den Berghe, S.; Van Renterghem, W.; Leenaers, A. J. G., Self-Organization of Cadmium Sulfide Nanoparticles on the Macroscopic Scale. Phys Status Solidi B Basic Res 2005, 242, R61-R63.
    50.Yang, C.; Liu, S.; Li, M.; Wang, X.; Zhu, J.; Chong, R.; Yang, D.; Zhang, W. H.; Li, C., The Role of Glutathione on Shape Control and Photoelectrical Property of Cadmium Sulfide Nanorod Arrays. J. Colloid Interface Sci. 2013, 393, 58-65.
    51.Kundu, J.; Khilari, S.; Pradhan, D., Shape-Dependent Photocatalytic Activity of Hydrothermally Synthesized Cadmium Sulfide Nanostructures. ACS Appl. Mater. Interfaces 2017, 9, 9669-9680.
    52.Andreas, R.; Zhang, J., Characteristics of Adsorption Interactions of Cadmium(II) onto Humin from Peat Soil in Freshwater and Seawater Media. Bull. Environ. Contam. Toxicol. 2014, 92, 352-357.
    53.Pearson, R. G., Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533-3539.
    54.Maroni, V. A.; Hathaway, E. J., Raman Spectra of the CdCl2-KCl System. Electrochim. Acta 1970, 15, 1837-1840.
    55.Macklin, J. W.; Plane, R. A., Raman Study of Stepwise Formation of Bromide Complexes of Zinc, Cadmium, and Mercury in Aqueous Solution. Inorg. Chem. 1970, 9, 821-827.
    56.Rolfe, J. A.; Sheppard, D. E.; Woodward, L. A., Raman Spectra of Complex Cadmium and Mercuric Halide Anions in Solution. Trans. Faraday Soc. 1954, 50, 1275-1283.
    57.Rossetti, R.; Ellison, J. L.; Gibson, J. M.; Brus, L. E., Size Effects in the Excited Electronic States of Small Colloidal CdS Crystallites. J. Chem. Phys. 1984, 80, 4464-4469.
    58.Dalven, R., Calculation of Effective Masses in Cubic CdS and CdSe. Phys Status Solidi B Basic Res 1971, 48, K23-K26.
    59.Fabregat-Santiago, F.; Garcia-Belmonte, G.; Bisquert, J.; Bogdanoff, P.; Zaban, A., Mott-Schottky Analysis of Nanoporous Semiconductor Electrodes in Dielectric State Deposited on SnO2(F) Conducting Substrates. J. Electrochem. Soc. 2003, 150, E293.
    60.O'Hayre, R.; Nanu, M.; Schoonman, J.; Goossens, A., Mott−Schottky and Charge-Transport Analysis of Nanoporous Titanium Dioxide Films in Air. J. Phys. Chem. C 2007, 111, 4809-4814.

    QR CODE