簡易檢索 / 詳目顯示

研究生: 藍怡雯
Yi-Wen Lan
論文名稱: 改良IEEE 802.11 集中式協調功能與IEEE 802.11e進階分散式傳輸媒介存取的機制
Enhancement of IEEE 802.11 PCF scheduling and IEEE 802.11e EDCA
指導教授: 陳志成
Jyh-Cheng Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 44
中文關鍵詞: IEEE 802.11集中式諧調功能進階分散式傳輸媒介存取機制頻寬分配演算法省電
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著多媒體應用程式的變化與成長,服務品質保證(QoS)已變成了一個很重要的議題。由於無線網路本身傳輸媒介的不穩定性,在無線網路裡的服務品質保證比有線網路中要來的更有挑戰性。這篇論文提出了兩種方法,第一種為改良現今最廣為流傳的無線網路技術—IEEE 802.11,第二種方法則是用來改進IEEE 802.11e。
    在這篇論文的第一部份,我們提出一個方法來改善IEEE 802.11的集中式協調功能(PCF)。集中式協調功能是一個集中式的媒介管理機制,而且可以保障對於延遲與頻寬有要求的使用者的服務品質。但是,在IEEE 802.11中並沒有提出明確的分配頻寬演算法,而分配頻寬的演算法卻對整體網路效能有極大的影響。根據模擬所做的分析,本論文中所提出的演算法在封包延遲可以得到很好的效能。
    本論文的第二部份是針對IEEE 802.11e進階分散式傳輸媒介存取機制所提出的改進方法;IEEE 802.11e是為了改進IEEE 802.11服務品質保證的不足所提出的草案。與前面所述的集中式協調功能不同,進階分散式傳輸媒介存取機制為一個分散式的傳輸媒介競爭方式。本論文所提出的機制僅需引入兩個參數,就可以有效的減少使用者的能源消耗。除此之外,本方法也可以降低平均的封包延遲時間。


    ABSTRACT
    Enhancement of IEEE 802.11 PCF and IEEE 802.11e EDCA

    As the growth of various multimedia applications, quality of service (QoS) has become an important issue. Lacking of link stability, QoS in wireless environment has more challenge compared with that in wired network. This thesis provides two enhanced approaches based on the most widely deployed wireless LAN technology, IEEE 802.11, and its amendment, 802.11e.
    In the first part of this thesis, we propose a solution which aims to improve the performance of Point Coordination Function (PCF) in 802.11. PCF is designed as a centralized
    scheme and is suitable for delay-sensitive or bandwidth-demand trafc. However, the standard only recommends Round Robin as the scheduling mechanism. The scheduling scheme
    has critical inuence on the nal performance of PCF. The simulation results have shown that the proposed method outperforms Round Robin both in delay and throughput.
    The second part of the thesis targets at the IEEE 802.11e Enhanced Distributed Channel Access (EDCA), which is the QoS complement to the original 802.11 standard. Contrary to PCF, EDCA is dened as a distributed medium access scheme. Contrary to PCF, EDCA is defined as a distributed medium access scheme. By only introducing two parameters, the proposed scheme could signicantly reduce the total energy consumption compared with the original EDCA. Besides, the numerical results show that the proposed method could reduce the average packet delay as well.
    The solutions proposed in this thesis are fully complied with IEEE 802.11 and 802.11e. By extensive simulation, they have been shown to be both efcient and practical.

    Contents Acknowledgments : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : iii Abstract : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : iv List of Tables : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : viii List of Figures : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ix 1. Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 1.1. IEEE 802.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1. Point Coordination Function (PCF) . . . . . . . . . . . . . . . . . 2 1.1.2. Distributed Coordination Function (DCF) . . . . . . . . . . . . . . 4 1.2. IEEE 802.11e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1. HCF Controlled Channel Access (HCCA) . . . . . . . . . . . . . . 6 1.2.2. Enhanced Distributed Channel Access (EDCA) . . . . . . . . . . . 7 2. Enhancement of PCF scheduling : : : : : : : : : : : : : : : : : : : : : : : : 10 2.1. Background and literature work . . . . . . . . . . . . . . . . . . . . . . . 10 2.2. The proposed solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3. Simulation and Numerical Results . . . . . . . . . . . . . . . . . . . . . . 21 2.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 vi 3. Enhanced Distributed Channel Access with Contention Adaption : : : : : : : 26 3.1. Background and literature work . . . . . . . . . . . . . . . . . . . . . . . 26 3.2. The proposed solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3. Simulation and Numerical Results . . . . . . . . . . . . . . . . . . . . . . 30 3.4. Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4. Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39 Bibliography : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41 vii List of Tables 2.1. MWFQ simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1. System parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2. Trafc parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 viii List of Figures 1.1. Structure in IEEE 802.11 MAC . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2. IEEE 802.11 PCF process . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3. Foreshortened PCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4. IEEE 802.11 DCF operation . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5. IEEE 802.11e HCF operation . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6. IEEE 802.11e EDCA operation . . . . . . . . . . . . . . . . . . . . . . . . 8 1.7. The Contention Free Burst (CFB) operation . . . . . . . . . . . . . . . . . 8 2.1. The “More Data” eld in MAC frame control eld . . . . . . . . . . . . . 16 2.2. The state transition diagram of the three states: backlogged, bad channel, and unbacklogged states . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3. The format of 802.11 Association Request message . . . . . . . . . . . . . 18 2.4. The process of MWFQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5. MWFQ simulation topology . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.6. The error model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.7. The delay results of RR and MWFQ with same packet size 400bytes . . . . 23 2.8. The delay results of RR and MWFQ with same trafc rate 64kbps . . . . . . 24 ix 3.1. Simulation topology . . . . . . . . . . . . . . . . . . . . . . . 30 3.2. Packet delay: comparison of EDCA and EDCA/CA . . . . . . . . . . . . . 34 3.3. Energy consumption: comparison of EDCA and EDCA/CA . . . . . . . . . 34 3.4. Energy consumption: varying  and Nacc . . . . . . . . . . . . . . . . . . 35 3.5. Packet delay of AC VO: varying  and Nacc . . . . . . . . . . . . . . . . . 35 3.6. Packet delay of AC VI: varying  and Nacc . . . . . . . . . . . . . . . . . 36

    [1] ANSI/IEEE Std 802.11, “Wireless LAN medium access control (MAC) and physical
    layer (PHY) specications,” 1999.
    [2] IEEE P802.11e/D10.0, “Wireless medium access control and physical layer specications:
    medium access control quality of service enhancements,” Sept. 2004.
    [3] Antonio Grillo, Mario Nunes, “Performance evaluation of ieee 802.11e,” in Personal,
    Indoor and Mobile Radio Communications, vol. 1, pp. 511–517, Sept. 2002.
    [4] D. G. Dongyan Chen and J. Zhang, “Supporting real-time trafc with qos in ieee
    802.11e based home networks,” in Consumer Communications and Networking Conference,
    pp. 205–209, Jan. 2004.
    [5] P. Garg, R. Doshi, R. Greenem, M. Baker, M. Malek, and X. Cheng, “Using ieee
    802.11e mac for qos over wireless,” in Performance, Computing, and Communications
    Conference, pp. 537–542, April 2003.
    [6] A. Parekh and R. Gallager, “A generalized processor sharing approach to ow control in
    integrated services networks-the single node case,” in INFOCOM, vol. 2, pp. 915–924,
    May 1992.
    [7] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queueing algorithm,
    ” in Symposium proceedings on Communications architectures and protocols,
    vol. 19, August 1989.
    41
    Bibliography
    [8] P. Goyal, H. M. Vin, and H. Cheng, “Start-time fair queueing: A scheduling algorithm
    for integrated services packet switching networks,” IEEE/ACM Transactions on Networking
    (TON), vol. 5, October 1997.
    [9] S. Lu, V. Bharghavan, and R. Srikant, “Fair scheduling in wireless packet networks,”
    IEEE/ACM Transactions on Networking (TON), vol. 7, August 1999.
    [10] T. Ng, I. Stoica, and H. Zhang, “Packet fair queueing algorithms for wireless networks
    with location-dependent errors,” in INFOCOM, vol. 3, pp. 1103 – 1111, March 1998.
    [11] P. Ramanathan and P. Agrawal, “Adapting packet fair queueing algorithms to wireless
    networks,” in Proceedings of the 4th annual ACM/IEEE international conference on
    Mobile computing and networking, October 1998.
    [12] A. Ganz, A. Phonphoem, and Z. Ganz, “Robust superpoll protocol for ieee 802.11
    wireless lans,” in Military Communications Conference, vol. 2, pp. 570–574, October
    1998.
    [13] S.-C. Lo, G. Lee, andW.-T. Chen, “An efcient multipolling mechanism for ieee 802.11
    wireless lans,” IEEE Transactions on Computers, vol. 52, June 2003.
    [14] R. Ranasinghe, L. Andrew, and D. Everitt, “Impact of polling strategy on capacity
    of 802.11 based wireless multimedia lans,” in IEEE International Conference on Networks,
    pp. 96–103, Sept. 1999.
    [15] H.-Y. Wei, C.-C. Chiang, and Y.-D. Lin, “Co-drr: an integrated uplink and downlink
    scheduler for bandwidth management over wireless lans,” in Proceedings. Eighth IEEE
    International Symposium on Computers and Communication, pp. 1415–1420, June
    2003.
    [16] M. Shreedhar and G. Varghese, “Efcient fair queuing using decit round robin,”
    IEEE/ACM Transactions on Networking (TON), vol. 4, june 1996.
    [17] V. Dao, A. Wei, S. Boumerdassi, D. De Geest, and B. Geller, “A new access method
    supporting qos in ieee 802.11 network,” in Vehicular Technology Conference, vol. 6,
    pp. 3537–3540, October 2003.
    [18] J.-Y. Yeh and C. Chen, “Support of multimedia services with the ieee 802.11 mac
    protocol,” in IEEE International Conference on Communications, vol. 1, pp. 600 –
    604, April 2002.
    [19] P. Ansel, Q. Ni, and T. Turletti, “Fhcf: An efcient scheduling scheme for ieee
    802.11e,” ACM/Kluwer Journal on Mobile Networks and Applications (MONET),
    2005.
    [20] Y.-J. Kim and Y.-J. Sun, “Adaptive polling mac schemes for ieee 802.11 wireless lans,”
    in Vehicular Technology Conference, vol. 4, pp. 2528–2532, April 2003.
    [21] S. Karande, S. A. Khayam, M. Krappel, and H. Radha, “Analysis and modeling of
    errors at the 802.11b link layer,” in ICME, vol. 1, pp. 673–676, July 2003.
    [22] K. Xu, Q. Wang, and H. Hassanein, “Performance analysis of differentiated QoS
    supported by IEEE 802.11e enhanced distributed coordination function (EDCF) in
    WLAN,” in Proc. of IEEE GLOBECOM, pp. 1048–1053, December 2003.
    [23] P. Ferre, A. Doufexi, A. Nix, and D. Bull, “Throughput analysis of IEEE 802.11 and
    IEEE 802.11eMAC,” in Proc. of IEEEWireless Communications and Networking Conference,
    pp. 783–788, March 2004.
    [24] S. Choi, J. del Prado, S. S. Nandgopalan, and S. Mangold, “IEEE 802.11e contentionbased
    channel access (EDCF) performance evaluation,” in Proc. of IEEE International
    Conference on Communications (ICC), pp. 1151–1156, May 2003.
    [25] J. del Prado Pavon and S. N. Shankar, “Impact of frame size, number of stations and
    mobility on the throughput performance of IEEE 802.11e,” in Proc. of IEEE Wireless
    Communications and Networking Conference, pp. 789–795, March 2004.
    [26] J. W. Robinson and T. S. Randhawa, “Saturation throughput analysis of IEEE 802.11e
    enhanced distributed coordination funciton,” Journal on Selected Areas in Communications,
    vol. 22, pp. 917–928, June 2004.
    [27] Z.-N. Kong, D. H. K. Tsang, B. Bensaou, and D. Gao, “Performance analysis of IEEE
    802.11e contention-based channel access,” Journal on Selected Areas in Communications,
    vol. 22, pp. 2095–2106, December 2004.
    [28] S.-M. Kim and Y.-J. Cho, “QoS enhancement scheme of EDCF in IEEE 802.11e wireless
    LANs,” Electronics Letters, vol. 40, August 2004.
    [29] A. Kopsel and A. Wolisz, “Voice transmission in an ieee 802.11 wlan based access
    network,” in Proc. of ACM International Workshop on Wireless Mobile Multimedia,
    pp. 23–32, July 2001.
    [30] “The Network Simulator - ns-2.” http://www.isi.edu/nsnam/ns/.
    [31] E.-S. Jung and N. H. Vaidya, “An energy efcient mac protocol for wireless lan,” in
    infocom, vol. 3, pp. 1756–1764, June 2002.
    [32] G. Bianchi, “Performance analysis of the ieee 802.11 distributed coordination function,
    ” IEEE Jounal on Selected Areas in Communications, vol. 18, March 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE