研究生: |
魏子強 Wei, Zi-Qiang |
---|---|
論文名稱: |
製備腺嘌呤/金包覆之超順磁性奈米粒子於治療診斷之應用 Fabrication of Superparamagnetic Nanoparticles@adenine/ Au Hybrid Nanoparticles by Coordinated Polymerization in Theranostic Application |
指導教授: |
黃郁棻
Huang, Yu-Fen |
口試委員: |
黃志清
姜文軒 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 超分子 、自組裝 、腺嘌呤 、穀胱甘肽 |
外文關鍵詞: | supramolecular, self-assembling, adenine, Glutathione |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
核甘酸與金屬離子可以藉由配位聚合的方式進行自組裝而製備出球狀膠體奈米粒子。此奈米粒子可透過包覆藥物分子及奈米尺度的載體提供多樣性的應用。在本研究中,將三磷酸腺苷修飾的超順磁性奈米粒子做為核並透過腺嘌呤與金離子以自組裝的方式在其外圍形成一不具晶形的保護層。自組裝的奈米粒子大小可經由反應時間、腺嘌呤濃度及金離子濃度之間的比例來完成。當腺嘌呤與金離子濃度比例為 1: 4時,經由穿透式電子顯微鏡鑑定結果其腺嘌呤/金奈米粒子之粒徑大小為140 nm 至 220 nm。此外,藉由載體自組裝過程中添加藥物或是染劑分子成功包覆於其中。本研究利用此新型自組裝藥物載體可應用於藥物傳輸系統,於細胞株 Tramp-C1 達到良好的治療效果。另外,研究中發現當加入1 mM 穀胱甘肽 (Glutathione),發現酵素能有效的破壞載體結構而促使包覆內的藥物釋出,此具備控制與觸發應答性載體之特性於多項生醫領域中,具有良好且多功能的潛在前瞻性。
Nucleotides and metal ions could assemble spontaneously in water to form spherical colloidal particles through coordination polymerization. The encapsulation of guest molecules and nanoscale materials in these supramolecular networks holds promise to tailor their functions for various applications. In this work, adenosine 5’-triphosphate modified porous hollow superparamagnetic iron oxide nanoparticles (PHNPs) was served as a scaffold for defining assembly of the amorphous shell from adenine and gold ions. The size of the hybrid nanoparticles could be controlled by adjusting reaction conditions such as reaction time, concentration, and the ratio of reactants. Transmission electron microscopy results revealed the formation of hierarchical self-assembled nanoparticles in sizes ranging from 140 nm to 220 nm in diameter. Moreover, fluorescent dyes and drug molecules were also encapsulated successfully during the self-assembly process. When mixing with glutathione, an observable increase of florescence indicated the gradual release of guest molecules from the dye-incorporated hybrid nanoparticles. Triggered release was also accessible to high-frequency magnetic field change. Overall, the present hybrid nanoparticles provide versatile functionalities in a variety of applications. Their utilization in drug delivery and controlled release is currently in progress.
1. Pedersen, C.J., Cyclic Polyethers and Their Complexes with Metal Salts J. Am. Chem. Soc., 1967. 89: p. 7017-7036.
2. Lehn, J.M., Supramolecular Chemistry: Receptors, Catalysts, and Carriers. Science, 1985. 227: p. 849-856.
3. Lehn, J.M., Supramolecular Chemistry — Scope and Perspectives Molecules : Supermolecules, Molecular Devices. 1987: Nobel Lecture.
4. Fischer, E., Einfluss der Configuration auf die Wirkung der Enzyme. Ber. Deutsch. Chem. Ges., 1984. 27: p. 2985-2993.
5. Inaba, K., T. Wakuda, and K. Uekama, J. Inclusion Phenom., 1984. 2: p. 467.
6. Pedersen, C.J., Cyclic Polyethers and Their Complexes with Metal Salts J. Am. Chem. Soc. , 1967. 89: p. 7017-7036.
7. Dario, L., M. Fernando, and M.P. Filippo, Crown ethers as phase-transfer catalysts in two-phase reactions. J. Chem. Soc., Chem. Commun., 1974(21): p. 879-880.
8. Pease, A.R., et al., Switching Devices Based on Interlocked Molecules. Acc. Chem. Res. , 2001. 34: p. 433.
9. Gutsche, C.D., Calixarenes. Ace. Chem. Res., 1983. 16: p. 161-170.
10. Shinkai, S., et al., Molecular Design of Calixarene-Based Uranophiles Which Exhibit Remarkably High Stability and Selectivity. J. Am. Chem. Soc., 1987. 109: p. 6371-6376.
11. Odriozola, I., N. Kyritsakas, and J.M. Lehn, Structural codons: linearity/helicity interconversion by pyridine/pyrimidine exchange in molecular strands. Chem. Commun., 2004: p. 62-63.
12. Neal, E.A. and S.M. Goldup, Chemical consequences of mechanical bonding in catenanes and rotaxanes: isomerism, modification, catalysis and molecular machines for synthesis. Chem. Commun., 2014. 50: p. 5128-5142.
13. Leininger, S., B. Olenyuk, and P.J. Stang, Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals. Chem. Rev., 2000. 100: p. 853-908.
14. Liu, Y. and Z. Tang, Nanoscale Biocoordination Polymers: Novel Materials from an Old Topic Chem. Eur. J., 2012. 18: p. 1030-1037.
15. Sivakova, S. and S. Rowan, Nucleobases as supramolecular motifs. 2005. 34: p. 9-21.
16. Morikawa, M., et al., ATP as Building Blocks for the Self-Assembly of Excitonic Nanowires. J. Am. Chem. Soc., 2004. 127: p. 1358-1359.
17. Purohit, C.S. and S. Verma, A Luminescent Silver−Adenine Metallamacrocyclic Quartet. J. Am. Chem. Soc., 2006. 128: p. 400-401.
18. HO, T.L., The Hard Soft Acids Bases (HSAB) Principle and Organic Chemistry. Chem. Rev., 1975. 75: p. 1-20.
19. Wei, H., et al., Nucleobase-Metal Hybrid Materials: Preparation of Submicrometer-Scale, Spherical Colloidal Particles of Adenine-Gold(III) via a Supramolecular Hierarchical Self-Assembly Approach. Chem. Mater., 2007. 19: p. 2987-2993.
20. Whitesides, G.M. and B. Grzybowski, Self-Assembly at All Scales. Science, 2002. 295: p. 2418-2421.
21. Giilen, K., R. Jensen, and N. Davidson, Binding of silver ion by adenine and substituted adenines. J. Am. Chem. Soc., 1964. 86: p. 2792-2796.
22. Verma, S., A.K. Mishra, and J. Kumar, The Many Facets of Adenine: Coordination, Crystal Patterns, and Catalysis. Acc. Chem. Res., 2010. 43: p. 79-91.
23. Lewis, F.D., R.L. Letsinger, and M.R. Wasielewski, Dynamics of Photoinduced Charge Transfer and Hole Transport in Synthetic DNA Hairpins. Acc. Chem. Res., 2001. 34: p. 159-170.
24. Benelli, C. and D. Gatteschi, Magnetism of Lanthanides in Molecular Materials with Transition-Metal Ions and Organic Radicals. Chem. Rev., 2002. 102: p. 2369-2387.
25. Bunzli, J.-C.G. and C. Piguet, Taking Advantage of Luminescent Lanthanide ions. 2005. 34: p. 1048-1077.
26. Kobayashi, S., et al., Rare-Earth Metal Triflates in Organic Synthesis. Chem. Rev., 2002. 102: p. 2227-2302.
27. Nishiyabu, R., et al., Nanoparticles of Adaptive Supramolecular Networks Self-Assembled from Nucleotides and Lanthanide Ions. J. Am. Chem. Soc., 2009. 131(2151-2158).
28. Tan, H. and Y. Chen, Ag+-enhanced fluorescence of lanthanide/nucleotide coordination polymers and Ag+ sensing. Chem. Commun., 2011. 47: p. 12373-12375.
29. Liu, B. and Y. Chen, Responsive Lanthanide Coordination Polymer for Hydrogen Sulfide. Anal. Chem., 2013. 85: p. 11020-11025.
30. Wang, F., et al., Rationally Designed Nucleobase and Nucleotide Coordinated Nanoparticles for Selective DNA Adsorption and Detection. Anal. Chem., 2013. 85: p. 12144-12151.
31. Cheng, K., et al., Porous Hollow Fe3O4 Nanoparticles for Targeted Delivery and Controlled Release of Cisplatin. J. Am. Chem. Soc., 2009. 131: p. 10637-10644.
32. Meister, A. and M.E. Anderson, GLUTATHIONE Ann. Rev. Biochem., 1983. 52: p. 711-760.
33. Schafer, F.Q. and G.R. Buettner, Redox Environment of The Cell as Viewed Through the Redox State of the Lutathione Disulfide/Glutathione Couple. Free Radical Biol. Med., 2001. 30: p. 1191-1212.
34. Hassan, S.S.M. and G.A. Rechnitz, Determination of Glutathione and Glutathione Reductase with a Silver Sulfide Membrane Electrode Anal. Chem., 1982. 54: p. 1972-1976.