研究生: |
孫秉毅 Sun, Bing-Yi |
---|---|
論文名稱: |
含鍶(鋇)陽離子三價鈦(亞)磷酸鹽的合成與探討鈦價數的調控 Syntheses of Strontium (Barium) Titanium(III) Phosphorus Oxysalts and Studies of Titanium Valence Mediation |
指導教授: |
王素蘭
Wang, Sue-Lein |
口試委員: |
許桂芳
Hsu, Kuei-Fang 林嘉和 Lin, Chia-Her |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 164 |
中文關鍵詞: | 鈦亞磷酸鹽 、鈦磷酸鹽 、水熱合成法 |
外文關鍵詞: | Titanium Phosphites, Titanium Phosphates, Hydrothermal method |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈦磷含氧鹽是一種有趣的氧化還原活性材料,但這些材料的中心金屬大多以四價鈦存在,由於三價鈦相對於四價鈦較不穩定以及缺乏可行的合成方法,造成三價鈦含氧鹽較為稀有,因此其應用性較少被探索。本論文專注於開發三價鈦亞磷酸/磷酸鹽,研究結果分為兩個部分:第一部分為三元系統的三價鈦亞磷酸鹽的合成與鑑定,成功將實驗室之前發展的鹼金屬系列延續至含鹼土金屬的同類型結構 (isotypic structure)。第二部分為鹼土金屬三價鈦磷酸鹽的合成與鑑定,並討論結構中雙氫磷酸根(H2PO4)參與鈦氧化的質子耦合電子轉移 (Proton-Coupled Electron Transfer,PCET) 反應。
第一部分的鹼土金屬三價鈦亞磷酸鹽包含一個鍶化合物: Sr0.5[TiIII(HPO3)3]·0.5H2O (Sr1)與兩個鋇化合物: Ba0.5[TiIII(HPO3)2] (Ba1)、 Ba3[Ti2III(HPO3)6] (Ba2)。此研究源於實驗室過去合成的一系列同結構型式的鹼金屬鈦亞磷酸鹽,其組成可用化學通式Ax[Ti(HPO3)2]表示,皆為混價鈦化合物,鈦三價與四價的比例隨著結構中鹼金屬離子的數目(x值)變化;文獻中也發現一個四價鈦Ti(HPO3)2具有同結構型式,可視為此系列x = 0 的一個終端組成;理論上,另一個x =1的終端組成將是我們追求的純三價鈦的化合物,但迄今尚未在鹼金屬系統中達成。在此研究中,我們從結構與電荷平衡的觀點出發,將A改變,直接合成具相同結構型式的鹼土金屬鈦亞磷酸鹽Sr1與Ba1,成功創造出適用Ax[Ti(HPO3)2] 通式系列的三價鈦化合物。另外,在合成Ba1過程中,也發現一個與上述系列鈦與磷比不同的純三價鈦化合物Ba3[Ti2(HPO3)6] (Ba2),此無機骨架具有pcu拓樸連接形式,鋇離子與Ba1類似坐落於八員環孔隧中,但由於結構的不同,導致鋇離子與無機骨架的配位數有所差異。
第二部分的鹼土金屬三價鈦磷酸鹽包含一個鍶化合物Sr2[Ti(H2PO4)(PO4)2] (SrTiP)、一個鋇化合物Ba3[Ti2(HPO4)6] (BaTiP)。此研究根據過去實驗室合成的鈣鈦磷酸鹽Ca2[Ti(HPO4)2(PO4)]˔(H2O) (D1),其結構由鈦氧八面體與兩個氫磷酸根 (HPO4)、一個磷酸根 (PO4)共角形成一維結構,而當D1在空氣下加熱,結構中的TiIII會丟去電子氧化成TiIV同時結構中的氫磷酸根(HPO4)會有質子的離去,此反應稱為質子耦合電子轉移 (Proton-Coupled Electron Transfer,PCET)氧化反應。由於D1具有特殊的氧化還原活性,因此本研究追求合成出具有PCET氧化活性的純三價鈦磷酸鹽,在合成條件上將鹼土金屬鈣更換為鍶、鋇,成功合成出三價鈦磷酸鹽SrTiP、BaTiP。就結構觀點來看,SrTiP、BaTiP結構中分別含有可提供質子的H2PO4、HPO4,因此推測兩者可能具有PCET氧化活性,但BaTiP受限於無法獲得大量晶體產物,難以進行後續實驗。本研究中將加熱後的SrTiP產物透過TGA、PXRD、in-situ PXRD以及紅外光光譜量測,顯示SrTiP可能也具有PCET氧化活性。
The titanium oxysalts are intriguing redox-active materials, and most of them are tetravalent titanium ion. The applications of trivalent titanium (TiIII) oxysalts are less explored due to relative instability of TiIII and lacking viable methods of synthesis. This thesis focuses on the development of trivalent titanium phosphite/phosphate (TiHPOs/TiPOs). The result can be divided into two parts. The first part is the synthesis and identification of trivalent TiHPOs with ternary system. The second part is the synthesis and identification of alkaline earth metal trivalent titanium phosphate.
The first part introduces three trivalent TiHPOs : Sr0.5[TiIII(HPO3)3]·0.5H2O (Sr1)、Ba0.5[TiIII(HPO3)2] (Ba1)、Ba3[Ti2III(HPO3)6] (Ba2). This research is derived from a series of alkali metal mixed-valence TiHPOs with the isotypic structural type synthesized in the previous work. Its composition can be expressed by the general chemical formula Ax[Ti(HPO3)2]. The ratio of TiIII/TiIV varies with the number of alkali metal ions (x value) in the structure. It is also found in the literature that a tetravalent Ti(HPO3)2 has the same structural type, which can be regarded as a terminal composition of this series x = 0 ; Theoretically, the other terminal composition of x = 1 will be the pure trivalent titanium we are pursuing, but it has not been achieved in the alkali metal system. In this study, we successfully created a series of trivalent TiHPOs whit a general formula Ax[Ti(HPO3)2]. In the process of synthesizing Ba1, a trivalent TiHPO (Ba2) with different Ti:P ratio (1:3) is founded, and the inorganic framework of Ba2 comprised a pcu topological connection form. Due to the difference in structure between Ba1 and Ba2, the coordination number of the barium ion is different.
The second part introduces two trivalent TiPOs : Sr2[Ti(H2PO4)(PO4)2] (SrTiP) and Ba3[Ti2(HPO4)6] (BaTiP). This research is based on the Ca2[Ti(HPO4)2(PO4)]˔(H2O) (D1) synthesized in the previous work. The structure of D1 is built of TiO6 cotahedra and HPO4/PO4 tetrahedral that share corners to form infinite chains, and it is discovered to display PCET oxidative activity. The oxidation reaction involved one proton was eliminated per each TiIII changing to TiIV, and the source of proton was HPO4 group. Due to the special redox activity of D1, this research pursued to synthesize trivalent TiPOs with PCET oxidation activity. In the synthesis conditions, the calcium was replaced with strontium and barium, and SrTiP and BaTiP were successfully synthesized. Since the hydrogen phosphate group of SrTiP and BaTiP contain protons that can be removed, it is speculated that both of them exhibit PCET oxidation activity. However, BaTiP is limited by the inability to obtain enough crystal products, and it is difficult to carry out subsequent experiments. Through TGA, PXRD, in-situ PXRD, and IR spectra measurements, it is shown that SrTiP may also exhibit PCET oxidation activity.
1-5 參考文獻
[1] (a) L. Liang, C. Liu, F. Jiang, Q. Chen, L. Zhang, H. Xue, H.-L. Jiang, J. Qian, D. Yuan, M. Hong, Nat. Commun. 2017, 8, 1-10; (b)Y. Cheng, A. C. Samia, J. D. Meyers, I. Panagopoulos, B. Fei, C. Burda, J. Am. Chem. Soc. 2008, 130, 10643-10647; (c)Y. Takashima, V. M. Martínez, S. Furukawa, M. Kondo, S. Shimomura, H. Uehara, M. Nakahama, K. Sugimoto, S. Kitagawa, Nat. Commun. 2011, 2, 1-8; (d) W. Jia, S. Murad, J. Chem. Phys. 2005, 122, 234708; (e)Y. Noori, K. Akhbari, RSC advances, 2017, 7, 1782-1808; (f)L. Zhao, S. Shi, M. Liu, G. Zhu, M. Wang, W. Du, J. Gao, J. Xu, Green Chem. 2018, 20, 1270-1279.
[2] A. F. Cronstedt, Rön och beskrifning om en obekant bärg art, som kallas Zeolites, 1756.
[3] M. E. Davis, C. Saldarriage, C. Montes, J. Garces and C. Crowder, Nature, 1988, 331, 698.
[4] (a)C.-H. Lin, S.-L. Wang, K.-H. Lii, J. Am. Chem. Soc. 2001, 123, 4649-4650; (b)Y.-C. Liao, F.-L. Liao, W.-K. Chang, S.-L. Wang, J. Am. Chem. Soc. 2004, 126, 1320-1321; (c)Y.-C. Liao, Y.-C. Jiang, S.-L. Wang, J. Am. Chem. Soc. 2005, 127, 12794-12795; (d)Y.-C. Liao, C.-H. Lin, S.-L. Wang, J. Am. Chem. Soc. 2005, 127, 9986- 9987; (e)Y.-L. Lai, K.-H. Lii, S.-L. Wang, J. Am. Chem. Soc. 2007, 129, 5350-5351; (f)Y.-C. Yang, S.-L. Wang, J. Am. Chem. Soc. 2008, 130, 1146-1147; (g)J. Pei‐Ci, Y. Ya‐Ching, L. Yi‐Chun, L. Wei‐Ren, W. Sue‐Lein, Angew. Chem. 2009, 121, 756-759; (h)H. Shu‐Hao, L. Chia‐Her, W. Wei‐Chang, W. Sue‐Lein, Angew. Chem. 2009, 121, 6240-6243; (i)J. Pei‐Ci, C. Niang‐Tsu, W. Sue‐Lein, Angew. Chem. Int. Ed. 2010, 49, 4200-4204; (j)H. Shu‐Hao, W. Sue‐Lein, Angew. Chem. Int. Ed. 2011, 50, 5319-5322; (k)Y.-C. Chang, S.-L. Wang, J. Am. Chem. Soc. 2012, 134, 9848-9851; (l)H.-Y. Lin, C.-Y. Chin, H.- L. Huang, W.-Y. Huang, M.-J. Sie, L.-H. Huang, Y.-H. Lee, C.-H. Lin, K.-H. Lii, X. Bu, S.-L. Wang, Science 2013; (m)H. Hui‐Lin, W. Sue‐Lein, Angew. Chem. Int. Ed. 2015, 54, 965-968; (n)M.-J. Sie, C.-H. Lin, S.-L. Wang, J. Am. Chem. Soc. 2016, 138, 6719-6722.
[5] (a)N. Kinomura, F. Muto, M. Koizumi, J. Solid State Chem. 1982, 45, 252-258; (b)A. Leclaire, A. Benmoussa, M. Borel, A. Grandin, B. Raveau, J. Solid State Chem. 1988, 77, 299-305; (c)A. Benmoussa, M. Borel, A. Grandin, A. Leclaire, B. Raveau, J. Solid State Chem. 1990, 84, 299-307; (d)W. T. Harrison, T. Gier, G. Stucky, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1994, 50, 1643- 1646; (e)R.-C. Myriam, S. Christian, F. Gérard, Comptes Rendus de l'Académie des Sciences-Series IIC-Chemistry. 1999, 2, 147-152; (f)N. Recham, J.-N. Chotard, J.-C. Jumas, L. Laffont, M. Armand, J.-M. Tarascon, Chem. Mater. 2010, 22, 1142-1148; (g)H. Kabbour, D. Coillot, M. Colmont, C. Masquelier, O. Mentré, J. Am. Chem. Soc. 2011, 133, 11900-11903; (h)S. S. Fedotov, N. D. Luchinin, D. A. Aksyonov, A. V. Morozov, S. V. Ryazantsev, M. Gaboardi, J. R. Plaisier, K. J. Stevenson, A. M. Abakumov, E. V. Antipov, Nat. Commun. 2020, 11, 1-11.
[6] 王素蘭, 科儀新知 2005, 48-54.
[7] Bruker (2016). APEX3, Bruker AXS Inc., Madison, Wisconsin, USA
[8] I. Brown, D. Altermatt, Acta Crystallographica Section B 1985, 41, 244-247.
2-6參考文獻
[1] T. Partheeban, B. Senthilkumar, V. Aravindan, S. Madhavi, M. Sasidharan, ACS Appl. Energy Mater.2021, 4, 2, 1387–1397.
[2] J. -L. Song, J. -H. Zhang, J. -G. Mao, Journal of Solid State Chemistry., 2016, 237, 371–377
[3] (a)S. Ekambaram, S. C. Sevov, Angew. Chem. Int. Ed. 1999, 38, 372- 375; (b)C. Serre, N. Guillou, G. Ferey, J. Mater. Chem. 1999, 9, 1185-1189; (c)S. Ekambaram, C. Serre, G. Férey, S. C. Sevov, Chem. Mater. 2000, 12, 444-449; (d)A. M. Chippindale, M. R. Grimshaw, A. V. Powell, A. R. Cowley, Inorg. Chem. 2005, 44, 4121-4123; (e)Y. Zhao, Y. Yang, X. Yang, W. Guo, Chem. Lett. 2007, 36, 456-457; (f)Y. Zhao, J. Yu, Y.-U. Kwon, Bull. Korean Chem. Soc. 2008, 29, 805-810; (g)C. Serre, M. Haouas, F. Taulelle, W. Van Beek, G. Férey, Comptes Rendus Chimie 2010, 13, 336-342.
[4] (a)N. Kinomura, F. Muto, M. Koizumi, J. Solid State Chem. 1982, 45, 252-258; (b)A. Leclaire, A. Benmoussa, M. Borel, A. Grandin, B. Raveau, J. Solid State Chem. 1988, 77, 299-305; (c)A. Benmoussa, M. Borel, A. Grandin, A. Leclaire, B. Raveau, J. Solid State Chem. 1990, 84, 299-307; (d)W. T. Harrison, T. Gier, G. Stucky, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1994, 50, 1643- 1646; (e)R.-C. Myriam, S. Christian, F. Gérard, Comptes Rendus de l'Académie des Sciences-Series IIC-Chemistry. 1999, 2, 147-152; (f)N. Recham, J.-N. Chotard, J.-C. Jumas, L. Laffont, M. Armand, J.-M. Tarascon, Chem. Mater. 2010, 22, 1142-1148; (g)H. Kabbour, D. Coillot, M. Colmont, C. Masquelier, O. Mentré, J. Am. Chem. Soc. 2011, 133, 11900-11903; (h)S. S. Fedotov, N. D. Luchinin, D. A. Aksyonov, A. V. Morozov, S. V. Ryazantsev, M. Gaboardi, J. R. Plaisier, K. J. Stevenson, A. M. Abakumov, E. V. Antipov, Nat. Commun. 2020, 11, 1-11.
[5] 李激揚; 吳俊標; 劉航, Vol. CN103395800A, 2013.
[6] A. Lallaoui, Z. Edfouf, O. Benabdallah, S. Idrissi, I. Saadoune, M. Abd-Lefdil, F. C. El Moursli, in 2017 International Renewable and Sustainable Energy Conference (IRSEC), IEEE, 2017, p1-3.
[7] 謝宗修, 清華大學化學系所學位論文 2017, 1-153
[8] C. T. Saouma, C. -C Tsou, S Richard, R. Ameloot, F. Vermoortele, S. Smolders, B. Bueken, A. G. DiPasquale, W. Kaminsky, C. N. Valdez, D. E. D. Vos and J. M. Mayer, Chem. Sci., 2019, 10, 1322.
[9] H. Yaghoobnejad Asl, A. Choudhury, Inorganic chemistry. 2015, 54, 6566-6572.
[10] X. J. Wang, J. H. Zhang, J. L. Song, F. Konga, J. G. Mao, CrystEngComm. 2013, 15, 2519.
[11] J. L. Song, J. H. Zhang, J.G. Mao, Journal of Solid State Chemistry. 2016, 237, 371-377.
[12] M. C. Biesinger, L. W. M. Lau, A. R. Gerson, R. St.C. Smart, Applied Surface Science. 2010, 257, 887-898.
[13] Z. Cheng, Y. Hu, K. Wu, Y. Xing, P. Pan, L. Jiang, J. Mao, C. Ni, Z. Wang, M. Zhang, Y. Zhang, X. Gu, X. Zhang, Electrochimica Acta. 2020, 337, 135789.
[14] H. Song, J. C. Kim, C. W. Lee, S. Park, M. A. Dar, S. H. Hong, D. W. Kim, Electrochimica Acta. 2015, 170, 25-32.
[15] Y. Horiuchi, T. Toyao, M. Saito, K. Mochizuki, M. Iwata, H. Higashimura, M. Anpo, M. Matsuoka, The Journal of Physical Chemistry C. 2012, 116, 20848-20853.
[16] M. M. Abraham, C. E. Bamberger, J. Am. Ceram. Soc. 1991, 74, 2299-2300.
[17] L. R. Grabstanowicz, S. Gao, T. Li, R. M. Rickard, T. Rajh, D.-J. Liu, T. Xu, Inorg. Chem. 2013, 52, 3884-3890.
[18] C. Kritayakornupong, K. Plankensteiner, B. M. Rode, ChemPhys Chem, 2004, 5, 1499-1506.
3-6參考文獻
[1] M. Roth, N. Angert, M. Tseitlin and A. Alexandrovski, Opt. Mater., 2001, 16, 131–136.
[2] N. Savage, B. Chwieroth, A. Ginwalla, B. R. Patton, S. A. Akbar and P. K. Dutta, Sens. Actuators, B, 2001, 79, 17–27.
[3] M. E. Davis, Acc. Chem. Res., 1993, 26, 111–115.
[4] A. Fujishima, X. Zhang and D. A. Tryk, Surf. Sci. Rep., 2008, 63, 515–582.
[5] J. N. Schrauben, R. Hayoun, C. N. Valdez, M. Braten, L. Fridley and J. M. Mayer, Science, 2012, 336, 1298–1301.
[6] B. Bueken, F. Vermoortele, D. E. Vanpoucke, H. Reinsch, C. C. Tsou, P. Valvekens, T. De Baerdemaeker, R. Ameloot, C. E. Kirschhock and V. Van Speybroeck, Angew. Chem., Int. Ed., 2015, 54, 13912–13917.
[7] C. T. Saouma, S. Richard, S. Smolders, M. F. Delley, R. Ameloot, F. Vermoortele, D. E. De Vos and J. M. Mayer, J. Am. Chem. Soc., 2018, 140, 16184–16189.
[8] S. S. Fedotov, N. D. Luchinin, D. A. Aksyonov, A. V. Morozov, S. V. Ryazantsev, M. Gaboardi, J. R. Plaisier, K. J. Stevenson, A. M. Abakumov and E. V. Antipov, Nat. Commun., 2020, 11, 1–11.
[9] A. Lallaoui, Z. Edfouf, O. Benabdallah, S. Idrissi, M. Abd-Lefdil and F. C. El Moursli, Int. J. Hydrogen Energy, 2020, 45, 11167–11175.
[10] N. Kinomura, F. Muto and M. Koizumi, J. Solid State Chem., 1982, 45, 252–258.
[11] A. Leclaire, A. Benmoussa, M. Borel, A. Grandin and B. Raveau, J. Solid State Chem., 1988, 77, 299–305.
[12] A. Benmoussa, M. Borel, A. Grandin, A. Leclaire and B. Raveau, J. Solid State Chem., 1990, 84, 299–307.
[13] 謝宗修, 清華大學化學系所學位論文 2017, 1-153
[14] 謝岱怡, 清華大學化學系所學位論文 2020, 1-131.
[15] M. C. Biesinger, L. W. M. Lau, A. R. Gerson, R. St.C. Smart, Applied Surface Science. 2010, 257, 887-898.
[16] Z. Cheng, Y. Hu, K. Wu, Y. Xing, P. Pan, L. Jiang, J. Mao, C. Ni, Z. Wang, M. Zhang, Y. Zhang, X. Gu, X. Zhang, Electrochimica Acta. 2020, 337, 135789.
[17] H. Song, J. C. Kim, C. W. Lee, S. Park, M. A. Dar, S. H. Hong, D. W. Kim, Electrochimica Acta. 2015, 170, 25-32.
[18] Y. Horiuchi, T. Toyao, M. Saito, K. Mochizuki, M. Iwata, H. Higashimura, M. Anpo, M. Matsuoka, The Journal of Physical Chemistry C. 2012, 116, 20848-20853.
[19] M. M. Abraham, C. E. Bamberger, J. Am. Ceram. Soc. 1991, 74, 2299- 2300.
[20] K. H. Lii, T. C. Lee, S. N. Liu, S. L. Wang, J. Chem. Soc., Dalton Trans., 1993, 1051-1054.
[21] W. T. A. Harrison, J. H. Buttery, Acta Cryst., 2000, C56, 274-275.
[22] I. D. Brown, Structure and bonding in crystals, 1981, p7-10
[23] F. C. Hawthorne, Zeitschrift für Kristallographie, 1992, 201, 183-206