研究生: |
徐誠佑 Cheng-Yu Hsu |
---|---|
論文名稱: |
螞蟻演算法求解零壹多限制式背包問題 An ant colony optimization algorithm for the zero-one Multidimensional Knapsack Problem |
指導教授: |
陳茂生
Maw-Sheng Chern |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 背包問題 、螞蟻演算法 |
外文關鍵詞: | Knapsack Problem, ACO algorithm, Ant System |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文中,將討論如何設計一個螞蟻演算法(Ant Colony Optimization Algorithm, ACO Algorithm)用來解決零壹多限制式背包問題(zero-one Multidimensional Knapsack Problem, zero-one MKP)。零壹多限制式背包問題一般定義如下:如何在符合 條限制條件下,從 項物品內選出數項物品,以期達到效益極大化。
設計螞蟻演算法主要可分為下列三個部份討論:1. 計算啟發法權值的方法(heuristic value),2. 螞蟻搜尋解的方法(solution construction)、3. 更新費洛蒙的方法(pheromone update)。在第一章將介紹過去曾被提出過各種不同設計的螞蟻演算法。在第二章將提出針對零壹多限制式背包問題的特性,可能有那些合適的螞蟻演算法可應用在該問題上。第三章將介紹兩種參數設定方法。在第四章則是對第二章所提出的設計以範例問題做試驗。由實驗之結果得知,本文所提出之螞蟻演算法比起過去的設計所需的運算時間較短,但解的品質相同。
In this thesis, we design an Ant Colony Optimization Algorithm (ACO Algorithm) for the zero-one Multidimensional Knapsack Problem. The zero-one Multidimensional Knapsack Problem is the problem of choosing some of n items such that the corresponding profit sum is maximized without violating m constraints.
ACO algorithm can be discussed with three aspects: heuristic value, solution construction, and pheromone update. In chapter 1, we introduce some different ACO algorithms that have been discussed. In chapter 2, we propose 5 kinds of ACO algorithm for the zero-one Multidimensional Knapsack Problem. In chapter 3, we try to set parameters using two different methods. In chapter 4, we discuss the computational results between the algorithms we proposed in chapter 2. Compared with the past algorithm, the ACO algorithm we designed can solve the zero-one Multidimensional Knapsack Problem with less computing time, and the solution qualities are the same.
參 考 文 獻
[1] Beasley, J., “OR-Library: Distributing Test Problems by Electronic Mail,” http://www.ms.ic.ac.uk/info.html.
[2] Bullnheimer, B., Hartl, R.F., and Strauss, C., “A new rank-based version of the ant system: a computational study,” Technical Report POM-03/97, Institute of Management science, University of Vienna. Accepted for publication in the Central European journal for Operations Research and Economics, (1997).
[3] Bullnheimer, B., Hartl, R.F., and Strauss, C., “An improved Ant System algorithm for the Vehicle Routing Problem,” Annals of Operations Research, Vol.89, pp.319-328, (1999).
[4] Dammeyer, F., and Voss, S., “Dynamic tabu list management using the reverse elimination method,” Annals of Operations Research, Vol.41, pp.31-46, (1993).
[5] Dorigo, M., Maniezzo, V., and Colorni, A., “Positive feedback as a search stratey,” Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano, IT, (1991).
[6] Dorigo, M., “Optimization, Learning and Natural Algorithms,” (in Italian). PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, IT, (1992).
[7] Dorigo, M., Maniezzo, V., and Colorni, A., “The ant system: Optimizatoin by a colony of cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics - Part B, Vol.26-1, pp.29-41, (1996).
[8] Dorigo, M., and Gambardella, L.M., “Ant colony system: A cooperative learning approach to the traveling salesman problem,” IEEE Transactions on Evoluationary Computation, Vol.1-1, pp.53-66, (1997).
[9] Dorigo M., and Gambardella, L.M., “Ant colonies for the traveling salesman problem,” BioSystems, Vol.43, pp.73-81, (1997).
[10] Dorigo, M., Caro, G.D., Gambardella, L.M., “Ant Algorithms for discrete Optimization,” Artificial Life, Vol.5, No.3, pp.137-172, (1999).
[11] Drexel, A. “A Simulated Annealing Approach to the Multiconstraint Zero-One Knapsack Problem,” Computing, Vol.40, pp.1-8, (1988).
[12] Gambardella, L.M., Taillard, E.D., and Dorigo, M., “Ant colonies for the QAP,” Technical Report IDSIA-4-97, IDSIA, Lugano, Switzerland, 1997. Accepted for publication in the Journal of the Operational Research society (JORS), (1997).
[13] Garfinkel, R.S., and Nemhauser, G.L., “Integer Programming,” John Wiley & Sons, New York, (1972).
[14] Khuri, S., Baeck, T., and Heitkoetter, J., “The Zero/One Multiple Knapsack Problem and Genetic Algorithms,” to appear in the 1994 ACM Symposium on Applied Computing, SAC'94, Phoenix, Arizona, (1994).
[15] Leguizamon, G., and Michalewicz, Z., “A New Version of Ant System for Subset Problems”, Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, Vol.2, pp.1459-1464, (1999).
[16] Lin, Y.H., “A Bibliographical Survey on Some Well-Known Non-Standard Knapsack Problems,” Information Systems and Operations Research, Vol.36, No.4, pp.274-317, (1998).
[17] Loulou, R., and Michaelides, E., “New Greedy-like Heuristics for Multidimensional Knapsack Problem,” Operations Research, Vol.27-6, pp.1101-1114, (1979).
[18] Maniezzo, V., “Exact and Approximate Nondeterministic Tree-Search Procedures for the Quadratic Assignment Problem,” Technical Report CSR 98-1, C.L. in Scienze dell’Informazione, Universita di Bologna, Sede di Cesena, Italy, (1998).
[19] Martello, S., and Toth, P., “Knapsack Problems, Algorithms and Computer Implementations,” John Wiley & Sons, New York, (1990).
[20] Pirkul, H., “A heuristic solution procedure for the multiconstraint zero-one knapsack problem,” Naval Research Logistics Quarterly, Vol.34-2, pp.161-172, (1987).
[21] Raidl, G. R., “Weight-codings in a genetic algorithm for the multi-constraint knapsack problem,” Proceedings of the 1999 IEEE Congress on Evolutionary Computation, Vol.1, pp.596-603, (1999).
[22] Senju, S. and Toyoda, Y., “An Approach to Linear Programming with 0-1 Variables,” Management Science, Vol.15-4, pp.B196-B207, (1968).
[23] Stutzle, T., “MAX-MIN Ant System for Quadratic Assignment Problems,” Technical Report AIDA-97-04, Intellectics Group, Department of Computer Science, Darmstadt University of Technology, Germany, July, (1997).
[24] Stutzle, T., and Hoos, H.H., “The MAX-MIN Ant System and Local Search for the Traveling Salesman Problem,” In T. Baeck, Z. Michalewicz, and X. Yao, editors, Proceedings of the IEEE International Conference on Evolutionary Computation (ICEC’97), pp.309-314, (1997).
[25] Stutzle, T., and Hoos, H.H., “Improvements on the Ant System: Introducing the MAX-MIN Ant System,” In R.F. Albrecht G.D. Smith, N.C. Steele, editor, Artificial Neural Networks and Genetic Algorithms, pp.245-249. springer Verlag, Wien New York, (1998).
[26] Taillard, E.D., and Gambardella, L.M., “Adaptive Memories for the Quadratic Assignment Problem,” Technical Report IDSIA-87-97, IDSIA, Lugano, Switzerland, (1997).
[27] Toyoda, Y., “A simplified Algorithm for Obtaining Approximate Solutions to Zero-One Programming Problems,” Management Science, Vol.21, pp.1417-1427, (1975).