簡易檢索 / 詳目顯示

研究生: 張宮賓
Kong-Pin Chang
論文名稱: 藉微波電漿輔助化學氣相沈積系統研究氧化鉬奈米材料
The research of molybdenum oxides nanostructure synthesized by MPECVD
指導教授: 施漢章
Han C. Shih
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 69
中文關鍵詞: 奈米材料氧化鉬微波電漿輔助化學氣相沈積系統
外文關鍵詞: nano material, molybdenum oxides, MPECVD
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當材料在奈米尺度時,會有不同於以往的尺寸效應,不論在光性、電性、磁性方面都有特殊的效果產生。鉬是一個重要的耐火族金屬元素,它有高熔點以及高導電性的特性。氧化鉬則常被使用於觸媒、感測器、發光及發電材料以及儲存材料,用途相當廣泛。在本研究中,利用微波電漿輔助化學氣相沈積法,合成氧化鉬的奈米結構。氧化鉬是以奈米板的形貌出現,厚度20-100奈米,寬度200-600奈米,長度1-2微米。不論是利用白金、金或是不鍍觸媒,都可以在矽基板上合成大量的氧化鉬。反應時間和通入的氧氣氣體流量對於氧化鉬生成的形貌有很大的影響。
    掃描式電子顯微鏡可以幫我們了解到氧化鉬的形態以及成長機制;X光繞射和穿透式電子顯微鏡幫我們確認了氧化鉬的結構為斜方晶三氧化鉬。拉曼光譜分析和紅外線光譜分析幫我們確認了三氧化鉬的鍵結形態。陰極發光的量測可以了解到氧化鉬可發出紅橙色光。雖然使用觸媒能合成氧化鉬,但在掃描式電子顯微鏡中沒有發現觸媒,因此由橫截面的拍攝推論氣-固機制是被認為較有可能的成長機制。


    When in nano-scale, materials bear different characteristics, such as optical, electrical, and magnetic properties. Molybdenum is an important refractory metal; it has a very high melting point and high electrical conductivity. Mo oxides are widely used in catalysts, sensors, photochromic and electrochromic materials. In this research, we synthesize Mo oxides nano structure by MPECVD (microwave plasma enhanced chemical vapor deposition). The morphology of Mo oxides is slab. Its thickness, width, and length are respectively 20~100nm, 200~600nm, and 1~2μm. Large amounts of single-crystal MoO3 nanoslabs are obtained on silicon wafer by using Pt and Au at catalysts or not using any catalysts. It has large effects on the morphology of MoO3 by changing reaction time and gas flowing rate.

    By using scanning electron microscopy, we can see the morphology and growing mechanism of Mo oxides. X-ray and transmission electron microscopy indicated the structure of Mo oxides was MoO3 with orthorhombic structure. By Raman spectroscopy, we can tell the differences among three different kinds of Molybdenum-oxide bonding. Cathodoluminescene shows great red-orange peak at 622nm of MoO3. Although MoO3 can be synthesized by using catalysts, we can not find them in SEM. By observing the cross section of sample we conclude vapor-solid is the portable growing mechanism.

    論文摘要------------------------------------ i Abstract----------------------------------- ii 致謝-------------------------------------- iii 目錄--------------------------------------- iv 第一章 序論 1.1 奈米材料簡介--------------------------- 1 1.2 奈米科技的發展------------------------- 3 1.3 奈米材料的特殊效應--------------------- 4 1.3.1 量子尺寸效應------------------------ 4 1.3.2 小尺寸效應-------------------------- 5 1.3.3 表面效應---------------------------- 5 1.3.4 量子穿遂效應------------------------ 6 1.4 奈米科技及材料應用--------------------- 6 1.4.1 奈米科技在機械方面的應用------------- 6 1.4.2 奈米科技在光電元件方面的應用--------- 7 1.4.3 奈米科技在生物醫學方面的應用--------- 7 1.4.4 奈米科技在化工方面的應用------------- 8 1.4.5 奈米科技在紡織方面的應用------------- 8 1.4.6 奈米科技在汽車方面的應用------------ 9 第二章 文獻回顧 2.1 一維奈米材料的成長機制---------------- 11 2.1.1 汽-固法--------------------------- 11 2.1.2 汽-液-固法------------------------ 11 2.1.3 溶液-液-固法---------------------- 13 2.2 合成MoOx奈米結構的文獻回顧----------- 14 2.3 氧化鉬的應用------------------------- 17 第三章 實驗方法與量測儀器 3.1 實驗流程----------------------------- 22 3.2 儀器介紹----------------------------- 24 3.2.1 微波電漿輔助化學氣相沈積系統------ 24 3.2.2 掃描式電子顯微鏡------------------ 26 3.2.3 X光繞射分析儀--------------------- 26 3.2.4 穿透式電子顯微鏡------------------ 26 3.2.5 拉曼光譜儀------------------------ 27 3.2.6 紅外線光譜分析儀------------------ 27 3.2.7 陰極發光-------------------------- 27 第四章 結果與討論 4.1 氧化鉬表面形態的探討------------------ 29 4.1.1 氣體流量對氧化鉬的影響------------- 30 4.1.2 反應時間對氧化鉬的影響------------- 33 4.2 氧化鉬的結構分析與成份鑑定------------ 36 4.2.1 X光繞射鑑定------------------------ 36 4.2.2 穿透式電子顯微鏡分析--------------- 39 4.2.3 氧化鉬結構------------------------- 46 4.2.4 拉曼光譜分析儀--------------------- 48 4.2.5 紅外線光譜分析儀------------------- 54 4.3 氧化鉬的發光性質分析------------------ 57 4.4 成長機制討論-------------------------- 60 第五章 總結-------------------------------- 68

    [1] 馬遠榮 <奈米科技>
    [2] 郭正次 朝春光 <奈米結構材料科學>
    [3] 曹茂盛 <奈米材料導論>
    [4] 顧寧 付德剛 張海黔 <奈米技術與應用>
    [5] Y.Zhang, N.Wang, S.Gao, R.He.S.Miao, J.Liu, J.Zhu,
    X.Zhang, Chem.Mater. 2002.14,3564
    [6] P.Yang, C.M.Lieber, J.Mater.Res. 1997.12,2981
    [7] S.Hayashi, H.Saito, J.Cryst.Growth. 1974.24/25,345
    E.G.Wolfe, T.D.Coskren, J.Am.Ceram.Soc. 1965.48,279
    [8] Y.Wu, P.Yang, J.Am.Ceram.Soc ,2001.123,3165
    [9] C.C.Chen, C.C.Yeh, C.H.Chen, M.Y.Yu, H.L.Liu, J.J.Wu,
    K.H.Chen, L.C.Chen, J.Y.Peng, Y.F.Chen, J.Am.Ceram.Soc.
    2001.123,2791
    [10] J.Zhang, X.S.Peng, X.F.Wang, Y.W.Wang, L.D.Zhang,
    Chem.Phys.Lett. 2001.345,372
    [11] M.Q.He, P.Z.Zhou, S.N.Mohammad, G.L.Harris,
    J.B.Halpern, R.Jacobs, W.L.Sarney, L.Salamanca-Riba,
    J.Cryst.Growth 2001.231,357
    [12] W.S.Shi, Y.E.Zheng, N.Wang, C.S.Lee, S.T.Lee,
    J.Vac.Sci.Tech.B 2001.231,357
    [13] Y.W.Wang, L.D.Zhang, C.H.Liang, G.Z. Wang, X.S.Peng,
    Chem. Phys.Lett. 2002.357,314
    [14] Y.W.Wang, G.W.Meng, L.D.Zhamg, C.H.Liang, J.Zhang,
    Chem.Mater. 2002.14,1773
    [15] X.Duan, C.M.Lieber, Adv.Mater. 2000.12,298
    [16] M.Lopez-Lopez, A.Guillen-Cervantes, Z.Rivera-Alvarez,
    I.Hernandez-Calderon, J.Cryst.Growth 1998.193,528
    [17] X.Lu.T.Hanrath, K.P.Johnston, B.A.Korgel, Nano.Lett.
    2003.3,93
    [18] T.J.Trentler, K.M.Hickman,S.C.Geol, A.M.Viano,
    P.C.Gibbons, W.E.Buhro, Science. 1995. 270,1791
    [19] M.P.Zach, K.H.Ng, R.M.Penner, Science. 2000.290,2120
    [20] Xiao-Lin, Jun-Feng Liu, Ya-Dong Li, Appl.Phys.Lett.
    2002.81,4832
    [21] Jun Zhou, Ning-Sheng Xu, Shao-Zhi Deng, Jun Chen,Jun-
    Cong She, Zhong-Lin Wang, Adv. Mat. 2003.21,1835
    [22] H.C.Zeng, Inorg.Chem. 1998.37,1967
    [23] M.Ferroni, V.Guidi, G.Martinelli, M.Sacerdoti,
    P.Nelli, G.Sberveglieri, Sens. Actuators B 1998.48,285
    [24] K.R.Reddy, K.Ramesh, K.K.Seela, V.V.Rao, K.V.R.Chary,
    Catal.Commun. 2000.68,168
    [25] J.N.Yao, K.Hashimoto, A.Fujishima, Nature 1992.355,624
    [26] H.C.Zeng, Inorg.Chem.,1998,37,1967~1973
    [27] Israel E.Wachs, Catalysis Today, 1996,437~455
    [28] S.H.Lee,M.J.Seong, C. Edwin Tracy, Angelo Mascarenhas,
    J. Roland Pitts, Satyen K. Deb, Solid State Ionics,
    2002,147,129~133
    [29] S.H.Baeck, Thomas F. Jaramillo, D.H.Jeong, Eric W.
    McFarland, Chem.Commun.,2004, 390~391
    [30] Minoru Itoh, Kousuke Hayakawa and Shuji Oishi, J.Phys:
    Condens. Matter, 2001,13,6853~6864
    [31] G. Blasse, M. Wiegel, Journal of Alloys and Compounds,
    1995,24,342~344
    [32] F.D.Hardcastle and I.E.Wachs, J.Raman.Spectrosc.
    1990,21,683
    [33] Jeanette G. Grasselli, Bernard J.Bulkin, Analytical
    Raman Spectroscopy

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE