研究生: |
傅智銘 Chih-Ming Fu |
---|---|
論文名稱: |
多速率資料傳輸的保護與時間訊號同步 Data Protection and Acquisition for Multirate Transmissions |
指導教授: |
黃仲陵
Chung-Lin Huang 黃文良 Wen-Liang Hwang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 小波 、碎型 、調變 、多速率 、傳輸 、錯誤控制碼 、錯誤隱藏 、獲取 |
外文關鍵詞: | wavelet, fractal, modulation, multirate, transmission, FEC, error-concealment, acquisition |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文主要討論在訊號層次與封包層次的多速率傳輸之錯誤防止。在訊號層次上,我們提出了一個以次空間為基礎的方式來獲取多速率小波調變的時間同步訊號,模擬的實驗結果顯示,我們可以順利的獲取訊號區間的開頭資訊,並且只要需要少量的後續追蹤的變異量作為代價。我們還提出了碎型調變資料同步獲取方式,我們利用最大概率的技術來建構我們的同步獲取函式,並且利用循序的找尋方式來得到碎型調變的開始位置。
在封包層次的多速率傳輸技術中,我們提出了分析式的失真函數作為訊號與通道編碼的演算法基礎。我們的方法將視訊壓縮與包裝傳輸分成兩個獨立的工作區塊,這樣一來我們就可將壓縮與封包傳輸分開來,並且適用在不同的多速率壓縮技術上。為了證實我們的效能,我們使用了兩個狀態的馬可夫模型去描述具有連續錯誤特性的通道,並且使用錯誤更正碼來保護資料。此外我們還提出一個全新的架構可以將接收端的後處理整合在失真函數中,並且作最佳化的錯誤保護分配,模擬的實驗結果顯示,我們的方法比之前的方法效能還要好很多。
我們建構出在訊號層次與封包層次的多速率資料傳輸的方法,並且找的多速率傳輸所會與到的問題並且提出解決方案,同時更提出了一個結合接收端後處理的整合式傳輸保護機制達到極佳的效能。
This thesis will discuss the error-resilient multirate transmissions on the signal level and the packet level. It proposes a subspace-based approach for acquiring the timing of wavelet-based multirate transmission systems. This shows that our approach can correctly acquire the initial timing of a symbol from anywhere within a symbol-time interval at a cost of increasing jitter variance. Then, we propose a frame timing acquisition algorithm for fractal modulation. Our algorithm exclusively uses the data redundancy inherent in fractal modulation to locate the start time of all the sub-bands (start-of-frame). The acquisition functions are derived using the maximum-likelihood method and the start-of-frame that maximizes the function attained by a serial search algorithm.
For packet level multirate transmissions, we propose an analytical Rate-Distortion optimized joint source and channel coding algorithm for error-resilient scalable encoded video for lossy transmission. Our method separates video coding and packetization into diRerent tiers which can be easily incorporated into any coding structure that generates a set of independent compressed bit-streams. To demonstrate the performance, we use the 2-state Markov model to describe the burst loss channel and Reed-Solomon codes as forward error correction codes.
We also propose a new framework in which the encoder estimates the effects of post-processing concealment and includes those effects in the rate-distortion analysis. Based on our framework, we develop optimal forward error control assignment
[1] M. Luise, M. Marselli, and R. Reggiannini, "Clock synchronization for wavelet-based multirate transmissions," IEEE Trans. on Commun., vol. 48, pp. 1047-1054, June 2000.
[2] J. Kim, R. M. Mersereau, and Y. Altunbasak, "A multiple-substream unequal error-protection and error-concealment algorithm for spiht-coded video bitstreams," IEEE Trans. Image Process., vol. 13, pp. 1547-1553, Dec. 2004.
[3] G. Wornell and A. V. Oppenheim, "Wavelet based representations for a class of self similar signals with applications to fractal modulation," IEEE Trans. on Inform. Theory, vol. 38, pp. 758-800, March 1992.
[4] G. Wornell, "Emerging applications of multirate signal processing and wavelets in digital communications," Proc. IEEE, vol. 84, pp. 586-603, April 1996.
[5] L. Atzori, D. D. Giusto, and M. Murroni, "Performance analysis of fractal modulation transmission over fast-fading wireless channels," IEEE Trans. on Broadcasting, vol. 48, pp. 103-110, June 2002.
[6] A. E. Bell and M. Manglani, "Wavelet modulation in rayleigh fading channels: Improved performance and channel identi‾cation," in Proc. IEEE ICASSP'02, Orlando, Florida, May 2002, vol. 3, pp. 2813-2816.
[7] S. He and Z. He, "Blind equalization of nonlinear communication channels using recurrent wavelet neural networks," in Proc. IEEE ICASSP'97, Munich, Germany, April, vol. 4, pp. 3305-3308.
[8] C. M. Fu, W. L. Hwang, and C. L. Huang, "Timing acquisition for wavelet-based multirate transmissions," in Proc. IEEE GLOBECOM'03, San Francisco, USA, December 2003, vol. 4, pp. 2208-2212.
[9] B.-J. Kim, Z. Xiong, and W. A. Pearlman, "Low bit-rate scalable video coding with 3-d set partitioning in hierarchical trees (3-D SPIHT)," IEEE Trans. Circuits Syst. Video Technol., vol. 10, pp. 1374-1387.
[10] C. Creusere, "A new method of robust image compression based on the embedded zerotree wavelet algorithm," IEEE Trans. Image Process., vol. 6, pp. 1436-1442, Oct. 1997.
[11] S. Cho and W. Pearlman, "Error resilient compression and transmission of scalable video," Proc. SPIE, vol. 4115, pp. 396-405.
[12] M. Zhao A. A. Alatan and A. N. Akansu, "Unequal error protection of SPIHT encoded image bit streams," IEEE J. Sel. Areas Commun., vol. 18, pp. 814-818, Jun. 2000.
[13] S. Cho and W. Pearlman, "A full-featured, error-resilient, scalable wavelet video codec based on the set partitioning in hierarchical trees algorithm," IEEE Trans. CSVT, vol. 12, pp. 157-171, Mar. 2002.
[14] R. M. Mersereau J. Kim and Y. Altunbasak, "Distributed video streaming using multiple descryiption coding and unequal error protectiton," IEEE Signal Processing, vol. 14, pp. 849-861, July 2005.
[15] E. Riskin A. Mohr and R. Ladner, "Unequal loss protection: Graceful degradation of image quality over packet erasure channel through forward error correction," IEEE J. Sel. Areas Commun., vol. 18, pp. 818-828, Oct. 2000.
[16] K. Ramchandran R. Puri, K. W. Lee and V. Bharghavan, "An integrated source and congestion control framework video streaming in the internet," IEEE Trans. Multimedia, vol. 1, pp. 18-12, Mar. 2001.
[17] J. Kim, R. M. Mersereau, and Y. Altunbasak, "Error-resilient image and video transmission over the internet using unequal error protection," IEEE Trans. Image Process., vol. 12, pp. 121-131, Feb. 2003.
[18] Mohsen Kavehrad and Belal Hamzeh, "Timing acquisition for wavelet-based multirate transmissions," in MILCOM 2004, 2004, pp. 398-403.
[19] A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, "Femtosecond spectral holography," IEEE J. Quantum Electron, vol. 28, pp. 2251-2261, 1992.
[20] F. Daneshgaran, M. Mondin, and F. Dovis, "Symbol synchronization for multi-channel frequency diversity transmission over fading channels," IEEE Vehicular Technology Conference, 1999.
[21] R. Peterson, R. Ziemer, and D. Borth, Introduction to spread-spectrum communications, Prentice Hall International, Inc., 1995.
[22] F. Daneshgaran, M. Mondin, and F. Dovis, "Symbol synchronization using wavelets," Proc. IEEE MILCOM, pp. 891-895, 1995.
[23] F. Daneshgaran and M. Mondin, "Wavelet-based signal design for reduced jitter timing-recovery," IEEE Trans. on Commu., vol. 45, no. 12, pp. 1523-1526, 1997.
[24] D. Taubman, "High performance scalable image compression with EBCOT," IEEE Transactions on Image Processing, vol. 9, pp. 1158-1170, July 2000.
[25] J. C. Liu, W. L. Hwang, and W. J. Hwang, "A block-based channel-optimized source coding for EZW-like progressive codec using rate-distortion analysis,"Submitted to IEEE Transactions on Circuts and Systems for Video Transmission.
[26] C. Creusere, "A new method of robust image compression based on the embedded zerotree wavelet algorithm," IEEE Transaction on Image Processing, vol. 6, pp. 1436-1442, October 1997.
[27] I. Moccagatta, S. Soudagar, J. Liang, and H. Chen, "Error-resilient coding in JPEG-2000 and MPEG-4," IEEE Journal on Selected Areas In Communications, vol. 18, pp. 899-914, June 2000.
[28] P. G. Sherwood and K. Zeger, "Progressive image coding for noisy channels," IEEE Signal Processing Letter, vol. 4, pp. 189-191, July 1997.
[29] D. W. Redmill and N. G. Kingsbury, "Still image coding for noisy channels," Internation Conference on Image Processing, pp. 95-99, 1994.
[30] P. Cosman, J. Rogers, P. Sherwood, and K. Zeger, "Combined forward error control and packetized zerotree wavelet encoding for transmission of images over varying channels," IEEE Transactions on Image Processing, vol. 9, pp.
[31] H. Man, F. Kossentini, and M. J. T. Smith, "Robust ezw image coding for noisy channels," IEEE Signal Processing Lett., vol. 4, pp. 227-229, August 1997.
[32] A. A. Alatan, M. Zhao, and A. N. Akansu, "Unequal error protection of SPIHT encoded image bit streams," IEEE Journal on Selected Areas Communications, vol. 18, pp. 814-818, June 2000.
[33] J. Kim, Russell M. Mersereau, and Y. Altunbasak, "Error-resilient image and video transmission over the internet using unequal error protection," IEEE Transations on Image Processing, vol. 12, pp. 121-131, Feb. 2003.
[34] M. Farshchian, Sungdae Cho, and W.A. Pearlman, "Optimal error protection for real-time image and video transmission," IEEE Signal Processing Letters, vol. 11, pp. 780-783, Oct. 2004.
[35] A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan, "Priority encoding transmission," IEEE Trans. on Information Theory, vol. 6, pp. 1737-1744, Nov. 1996.
[36] Sorina Dumitrescu, Xiaolin Wu, and Zhe Wang, "Globally optimal uneven error-protected packetization of scalable code streams," IEEE Transations on Multimedia, vol. 6, pp. 230-239, April 2004.
[37] Johnson Thie and David Taubman, "Optimal erasure protection assignment for scalable compressed data with small channel packets and short channel codewords," EURASIP Journal of Applied Signal Processing - Special issue on Multimedia over IP and Wireless Networks, vol. 2, pp. 207-219, 2004.
[38] N. V. Boulgouris, N. Thomos, and M. G. Strintzis, "Transmission of images over noisy channels using error-resilient wavelet coding and forward error correction," IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, pp. 1170-1181, Dec. 2003.
[39] A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan, "Priority encoding transmission," IEEE Trans. on Information Theory, vol. 6, pp. 1737-1744.
[40] U. Mengali and A. N. D'Andrea, Synchronization Techniques for Digital Receivers, Plenum press . New York and London, 1997.
[41] K. H. Mueller and M. Muller, "Timing recovery in digital synchronous data receivers," IEEE Trans. on Comm., vol. 24, pp. 516-531, May 1976.
[42] A. Polydoros and M. K. Simon, "Generalized serial search code acquisition: The equivalent circular state diagram approach," IEEE Trans. on Comm., vol. 32, pp. 1260-1268, 1984.
[43] A. J. Viterbi, Principles of Spread Spectrum Communication, Addison-Wesley Press, Boston, USA, 1995.
[44] H. V. Poor, An Interoduction to signal detection and estimation, Springer Verlag, USA, 1994.
[45] L. L. Yang and L. Hanzo, "Serial acquisition of DS-CDMA signals in multipath fading mobile channels," IEEE Trans. on Vehicular Technology, vol. 50, pp. 617-628, March 2001.
[46] A. Polydoros and C. Weber, "A uni‾ed approach to serial search spread-spectrum code acquisition-part I: General theory," IEEE Trans. on Communications, vol. 32, pp. 542-549, May 1984.
[47] A. Polydoros and C. Weber, "A uni‾ed approach to serial search spread-spectrum code acquisition-part II: A matched-‾lter receiver," IEEE Trans. on Communications, vol. 32, pp. 550-560, May 1984.
[48] S. Cho and W. A. Pearlman, "A full-featured, error-resilient, scalable wavelet video codec based on the set partitioning in hierarchical trees (spiht) algorithm," IEEE Transactions on Circuits and Systems for Video Technology, vol.12, pp. 157-171, March 2002.
[49] U. Horn, K. StuhlmAuller, and B. Girod, "Robust internet video transmission based on scalable coding and unequal error protection," Signal Processing: Image Communication, vol. 15, pp. 77-94, 1999.
[50] K. StuhlmAuller, N. FAarber, M. Link, and B. Girod, "Analysis of video transmission over lossy channels," IEEE Journal on Selected Areas in Communications, vol. 18, pp. 1012-1032, June 2000.
[51] J. Kim, R. M. Mersereau, and Y. Altunbasak, "Error-resilient image and video transmission over the internet usuing unequal error protection," IEEE Transactions on Image Processing, vol. 12, pp. 121-131, February 2003.
[52] T.-W. A. Lee, S.-H. Gary Chan, Q. Zhang, W. W. Zhu, and Y. Q. Zhang, "Allocation of layer bandwidths and FECs for video multicast over wired and wireless networks," IEEE Transactions on Circuits and Systems for Video Technology, vol. 12, pp. 1059-1070, December 2002.
[53] J. G. Proakis, "Digital communications," New York: Mc Graw-Hill, 1995.
[54] Bin-Feng Hung and Chung-Lin Huang, "Content-based fgs coding mode determination for video streaming over wireless network," IEEE J. Selected Areas in Communication, vol. 21, pp. 1595-1603, Dec. 2003.
[55] B. E. Usevitch, "A tutorial on modern lossy wavelet image compression: Foundations fo JPEG2000," IEEE Signal Processing Magazion, pp. 22-35, September 2001.
[56] A. Secker and D. Taubman, "Lifting-based invertible motion adaptive transform (limat) framework for highly scalable video compression," IEEE Trans. Image Process., vol. 12, pp. 1530V1542, Dec. 2003.
[57] S.-J. Choi and J.W. Woods, "Motion-compensated 3-d subband coding ofvideo," IEEE Transactions on Image Processing, vol. 8, pp. 155-167, Feb.1999.
[58] J.-R. Ohm, "Three-dimensional subband coding with motion compensatio," IEEE Transactions on Image Processing, vol. 3, pp. 559-571, Sep. 1994.
[59] I.V. Bajic and J.W. Woods, "Domain-based multiple description coding of images and video," IEEE Trans. Image Process., vol. 12.
[60] L. Atzori, G. Ginesu, and A. Raccis, "JPEG2000-coded image error conceal-ment exploiting convex sets projections," IEEE Trans. Image Process., vol. 14, pp. 487 - 498, Apr. 2005.
[61] S. Bel‾ore, M. Grangetto, and G. Magli, E.and Olmo, "Concealment of whole-frame losses for wireless low bit-rate video based on multiframe optical Low estimation," IEEE Transactions on Multimedia, vol. 7, pp. 316-329, Apr. 2005.
[62] S. Bel‾ore, M. Grangetto, and G. Magli, E.and Olmo, "Frame concealment for H.264/AVC decoders," IEEE Transactions on Consumer Electronics, vol. 51, pp. 227-233, Feb. 2005.
[63] Pau-Choo Chung, Chin-Wen Wu, and Yen-Lang Huang, "A jpeg 2000 error resilience method using uneven block-sized information included markers," IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, pp. 420- 424, March 2005.
[64] Chih-Ming Fu, Wen-Liang Hwang, and Chung-Lin Huang, "Error concealment protection for loss resilient bitplane-coded video communications," IEEE Proc. on ISCAS'06.
[65] H. Meyr, M. Moeneclaey, and S. Fechtel, Digital Communication Receivers, Wiley Interscience, 1998.