簡易檢索 / 詳目顯示

研究生: 康景翔
Kang, Chin-Hsiang
論文名稱: 壓水式反應器壓熱震之CFD技術建立與應用
ESTABLISHMENT AND APPLICATION OF CFD TO INVESTIGATE THE PTS CHARACTERISTIC BEHAVIOR IN PRESSURIZED WATER REACTOR
指導教授: 馮玉明
Ferng, Yuh-Ming
曾永信
Tseng, Yung-Shin
口試委員: 林志宏
Lin, Chih-Hung
周雄偉
Chou, Hsoung-Wei
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 102
中文關鍵詞: 壓熱震壓水式反應器計算流體力學PIRTV&VMSLBSO-1SBLOCA
外文關鍵詞: PTS, PWR, CFD, PIRT, Verification and Validation, SO-1, MSLB, SBLOCA
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 核能之使用主要是建構於核能保安、核能安全與核不擴散做為和平使用核能的基礎原則。近年來由於電腦技術進步飛快,除了電廠安全分析進步外,電廠各組件之結構也成為了另一項分析之要點。本研究即利用計算流體力學(Computational Fluid Dynamics, CFD)針對壓水式反應器壓力槽(Reactor Pressure Vessel, RPV)進行壓熱震(Pressurized thermal shock, PTS)之模擬。本研究根據過去針對德國ROCOM之實驗數據進行分析技術校驗之研究經驗作為基礎,以確保後續在核三廠反應器壓力槽模型建立上具有一定之可行性。另外也根據美國機械工程師學會(American Society of Mechanical Engineers, ASME)所提出之驗證及確認(Verification and Validation, V&V)步驟進行不準度分析,使模型之網格不準度合乎國際規範之標準。在暫態事故下,壓熱震對壓水式反應器於事故或暫態期間的完整性有顯著影響之現象,當壓熱震導致反應器壓力槽破損,將導致更嚴重的冷卻水流失與後續救援的問題。本研究根據資料整理與比對,利用清楚簡單之方式建立PIRT表。最後,再經由PIRT表所評分出之MSLB、SO-1、SBLOCA作為反應器壓力槽熱流分析之條件,並且根據所收集的事故邊界條件,進行了事故狀態下反應器壓力槽模型之溫度變化分析,其結果顯示,降流區內部中子屏蔽板與冷熱端環路的幾何關係,將導致部分壓力槽內壁具有較高的降溫速率。此一成果除了證實本研究之成果達到本研究精進我國結構可靠度分析技術之研究目的外,未來更可為我國核電機組之結構可靠度安全評估貢獻一已之力。


    Safety analysis has been the most important issue for the design of nuclear power plant (NPP) recently. Computational Fluid Dynamics (CFD) methodology can be applied in predicting the detailed knowledge of thermal-hydraulic phenomena in the applications of nuclear safety. In the present work, PWR pressure vessel model has been developed with CFD to predict the exhaustive of thermal-hydraulic behaviour in the downcomer of PWR. In the meanwhile, the framework composed of PIRT, validation and mesh uncertainty has been made to discuss the effects under different mesh designs followed from ASME V&V. Based on the analysis of PIRT, SO-1, MSLB, and SBLOCA were set as transient events for simulation. The results showed that unexpected variations on temperature, shear stress and velocity can be found near the vessel wall during a short period. The positions in downcomer for the inlet of cold leg and the neutron shielding plate may affect the core flow distribution and enhance cooling ability for core in some parts of vessel. This study presented the procedure of uncertainty qualification, including PIRT, mesh uncertainty and the methodology of CFD model, for PWR has been developed. The result can be regarded as the damage risk in RPV for comparison with the safety regulation requirements on vessel as well as a reference for the operation of PWR plants in Taiwan.

    中文摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 1.1 研究動機與背景 1 1.2 分析技術發展工具 2 第二章 文獻回顧 3 第三章 理論模式與數值分析 7 3.1 基礎方程式 7 3.2 紊流模式 8 3.3 數值分析設定 13 第四章 反應器壓力槽熱水流分析模式與靈敏度測試 16 4.1 模型建立與網格測試 16 4.2 網格不準度測試 23 4.3 紊流模式影響評估 38 第五章 分析案例選定與邊界條件建立 46 5.1 壓熱震事件概述 46 5.2 邊界條件建立 52 第六章 分析結果討論 58 6.1 正常運轉狀態熱流分析 58 6.2 緊迫性壓熱鎮事故熱流分析 60 6.3 預期性壓熱震事故熱流分析 69 6.4 相關運轉程序書精進之可行性評估 75 第七章 結論與未來工作 77 參考資料 79 附錄A MSLB事故UDF程式碼 82 附錄B SO-1事故UDF程式碼 87 附錄C SBLOCA事故UDF程式碼 88  

    1. 台灣電力公司,“馬鞍山電廠工程圖,” M1-0042-0011.001。
    2. U.S. NRC 10 CFR 50 Appendix A,” Fracture Prevention of Reactor Coolant Pressure Boundary,” 1984.
    3. U.S. NRC 10 CFR 50 Appendix G,”Fracture Toughness Requirements”, January 2011.
    4. ASME Code Section III, Appendix G, ”Protection Against Nonductile Failure”, 2010
    5. U.S. NRC 10 CFR 50.61,”Fracture Toughness Requirements”, January 2011.
    6. NRC, “Use of code cases N-588, N-640 and N-641 in developing pressure-temperature operating limits,” NRC regulatory issue summary, 2004-04.
    7. 台灣電力公司,“馬鞍山電廠運轉程序書-RCS完整狀態圖” 507.37 Rev. 3,中華民國101年11月2日。
    8. 台灣電力公司,“馬鞍山電廠運轉程序書-RCS完整性狀態圖基礎說明 ” 301.37 Rev. 0,中華民國100年3月16日。
    9. ASME, “EN-N-588 Alternative to Reference Flaw Orientation of Appendix G for Circumferential Welds in Reactor Vessels Section XI Division 1,” 2004.
    10. ASME, “EN-N-640 Alternative Reference Fracture Toughness for Development of P-T Limit Curves Section XI Division 1; ANNULLED SUPP 4,”2004.
    11. ASME, “EN-N-641 Alternative Pressure-Temperature Relationship and Low Temperature Overpressure Protection System Requirements Section XI Division 1 ,” 2004.
    12. B.R. Bass, C.E. Pugh, J. Sievers, and H. Schulz, “Overview of the International Comparative Assessment Study of Pressurized Thermal-Shock in Reactor Pressure Vessels,” Int. J. Pressure Vessels and piping, ol 78, p.p. 197-211, 2001.
    13. I. Jeong, C. Jang, J.H. Park, S.Y. Yull, T.E. Jin, H.G. Yuem, and S.G. Jeong, “Lessons learned from the plant-specific pressure thermal shock intergrity analysis on an embrittled reactor pressure vessel,” Int. J. Pressure Vessel and Piping, Vol. 78, p.p. 99-109, 2001.
    14. Timo Toppila, “ CFD simulation of Fortum PTS eTimo Toppila, “ CFD simulation of Fortum PTS experiment,” Int. J. Nuclear Engineering and Design, Vol. 238, p.p. 514-521, 2008.
    15. 曾亭綱,曾永信,馮玉明, “利用計算流體力學分析壓水式反應器之壓熱震熱流特性之研究” , 2014.
    16. S. Kliem, T. Sühnel, U. Rohde, T. Höhne, H.-M. Prasser, F.-P. Weiss “ Experiments at the mixing test facility rocom for menchmarking of cfd-codes,” Forschungszentrum Rossendorf, Institute of Safety Research P.O.B. 510119, D-01314 Dresden, Germany
    17. J. Mahaffy, et al., “Best practice guidelines for the use of CFD in nuclear reactor safety applications,” NEA/CSNI/R(2007)5, May 2007.
    18. U.S. NRC, “Computational Fluid Dynamics Best Practice Guidelines for Dry Cask Applications- Final Report”, NUREG-2152, 2013.
    19. Timo Toppila, “CFD simulation of Fortum PTS experiment,” Int. J. Nuclear Engineering and Design, Vol. 238, p.p. 514-521, 2008.
    20. P. Spalart, S. Allmaras, “A One-equation Turbulence Model for Aerodynamic Flows”, Technical Report AIAA-92-0439,1992.
    21. B. E. Launder, D. B. Spalding, “The Numerical Computation of Turbulent Flows, Computer Methods in Applied Mechanics and Engineering”, Volume 3, Issue 2, 1974, pp.269-289.
    22. V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski, C.G. Speziale, “Development of Turbulence Models for Shear Flows by a Double Expansion Technique”, Physics of Fluids A, Volume 4, No. 7, 1992, pp.1510-1520.
    23. T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu., “A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows”, Computers Fluids, Volume 24, No. 3, 1995, pp.227-238.
    24. D.C. Wilcox, “Reassessment of the Scale Determining Equation for Advanced Turbulence Models”, AIAA Journal, Volume 26, No. 11, 1988, pp.1299-1310.
    25. F.R. Menter, “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications”, AIAA Journal, Volume 32, No. 8, 1994, pp.1598-1605.
    26. B. E. Launder, G. J. Reece, W. Rodi, "Progress in the Development of a Reynolds-Stress Turbulent Closure", Journal of Fluid Mechanics, Volume 68, No. 3, 1975, pp.537-566.
    27. U.S. NRC, “RELAP5 Thermal Hydraulic Analysis to Support PTS Evaluations for the Oconee-1, Beaver Valley-1, and Palisades Nuclear Power Plants” 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE