簡易檢索 / 詳目顯示

研究生: 張伯維
Chang, Po-Wei
論文名稱: 具兩段式曝光讀取之高動態範圍互補式金氧半導體影像感測器
A Wide Dynamic Range CMOS Image Sensor with Dual Exposure Readout
指導教授: 謝志成
Hsieh, Chih-Cheng
口試委員: 鄭桂忠
黃柏鈞
邱進峰
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 90
中文關鍵詞: 互補式金氧半導體影像感測器兩段式曝光讀取高動態範圍
外文關鍵詞: CMOS image sensor, Dual Exposure Readout, Wide Dynamic Range
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文描述了一個應用照度偵測技術以及兩段式曝光讀取之高動態範圍互補式金氧半導體影像感測器,使影像感測晶片可以達到動態範圍延展的效果,並且不需要後級的訊號處理即可得到具有高動態範圍的影像。此論文貢獻了許多創先之處,首先是針對傳統的四電晶體主動式感測器提出了一個創新的操作方式,使其能夠在一張影像的時間內進行長曝光以及短曝光,並且不需要任何的外部影像處理來合成一張具有高動態範圍的影像。第二為照度偵測技術,藉由偵測部分訊號來判斷影像感測器所處環境光源大小,以此來消除前述操作方式在製程影響下的固定圖像雜訊,並且利用不同的長短曝光比以及不同的中間電壓值來提供可調整的轉折點,使其在不同的環境下皆能得到最佳的影像品質。
    此兩段式曝光讀取之高動態範圍互補式金氧半導體影像感測器具有128×128像素陣列,每像素包含四個電晶體,像素大小為 6×6 um2 ,填充因子為32%,並以TSMC 0.18um 1P6M 互補式金氧半導體影像感測器製程製作。一個128×128的影像感測器應用這些技術後,量測結果顯示出在長短曝光時間比例為140.4時擁有98.9dB動態範圍,較未使用此技術的傳統四電晶體主動式感測器增加了37dB,1.07mV (0.097%) 欄固定圖像雜訊 (FPN) ,在強光條件下的像素固定圖像雜訊從97.4mV (8.85%) 減少至18.2mV (1.65%)。


    This thesis describes a wide dynamic range dual exposure CMOS image sensor with illumination detection scheme to extend the dynamic range, and synthesize the images into a wide dynamic range scene without post signal processing. There are some innovations in this thesis. First, a novel operation for conventional 4T active pixel sensor is proposed so that it can proceed long exposure time and short time in a frame time, and does not require any external image processing to synthesize the wide dynamic range image. Second, an illumination detection scheme is used to reduce the fixed pattern noise (FPN) by process variation in above operation. By detecting the partial signal in the integration time, it can determine the illumination condition of the sensor. It provides a tunable transition point by using different exposure ratios and Vmid, making the sensor to obtain the best image quality in different environment.
    The prototype wide dynamic range dual exposure readout CMOS image sensor chip is composed of a 128×128 4T-pixel array, and the pixel pitch is 6×6 um2 with 32%fill factor. It was fabricated in TSMC 0.18um 1P6M CMOS image sensor process. A prototype 128×128 imager employed these schemes experimentally achieves 98.9 dB dynamic range with the exposure time ratio of 144. Compared with conventional 4T-APS without these schemes, it increased 37 dB of dynamic range. The column FPN is 1.07mV (0.097%), and the pixel FPN is reduced from 97.4mV (8.85%) to 18.2mV (1.65%) under high illumination condition.

    Contents 摘要 i ABSTRACT ii Contents iv LIST OF FIGURES vi LIST OF TABLES ix Chapter 1 Introduction P.10 1.1 Motivation P.10 1.2 Thesis Contribution P.11 1.3 Thesis Organization P.12 Chapter 2 Background Information P.13 2.1 Architecture Selection P.13 2.1.1 Active Pixel Sensor P.14 2.1.2 Wide Dynamic Range Sensor P.17 2.1.2.1 Logarithmic Sensor P.17 2.1.2.2 Well Capacity Adjustment Sensor P.19 2.1.2.3 Pulse Modulation Sensor P.20 2.1.2.4 Multiple Sampling Sensor P.22 2.2 Considerations of Dual Exposure Time Sensor P.25 2.2.1 Noise P.25 2.2.2 Dynamic Range P.28 2.3 Summary P.29 Chapter 3 Dual Exposure CMOS Image Sensor with Illumination Detection P.30 3.1 Methodology of Dual Exposure CMOS Image Senor P.30 3.2 Pixel Structure and Operation P.31 3.3 Illumination Detection P.36 3.4 Summary P.40 Chapter 4 Prototype Design of Dual Exposure CMOS Image Sensor P.41 4.1 System Architecture of Dual Exposure CMOS Image Sensor P.41 4.2 Circuit Design P.42 4.2.1 Analog circuit P.42 4.2.1.1 Illumination Detection Circuit P.44 4.2.1.2 Correlation Double Sampling (CDS) Circuit P.52 4.2.2 Digital Circuit P.56 4.2.2.1 Row and Column Selects P.56 4.2.2.2 Read Control P.57 4.3 Chip Operation P.58 4.4 Summary P.60 Chapter 5 Measurement Results P.61 5.1 Imager Die P.61 5.2 Measurement Environment Setup P.63 5.3 Photoelectric Conversion Characteristic P.67 5.3.1 Conventional 4T-APS Response P.68 5.3.2 Dual Exposure Sensor Response P.71 5.4 Summary P.81 Chapter 6 Conclusions P.82 6.1 Summary P.82 6.2 Future Work P.83 Bibliography P.85

    [1] P.-F. Ruedi, P. Heim, S. Gyger, F Kaess, C. Arm, R. Caseiro, J.-L. Nagel, and S. Todeschini, “An SoC combining a 132dB QVGA pixel array and a 32b DSP/MCU processor for vision applications” in Proc. IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, Feb. 2009, pp. 46–47.
    [2] M. Vatteroni, D. Covi; and A. Sartori, “A linear-logarithmic CMOS pixel for high dynamic range behavior with fixed-pattern-noise correction and tunable responsivity” in Proc. IEEE Sens. Conf., Oct. 2008, pp. 930–933.
    [3] H.-G. Graf, C. Harendt, T. Engelhardt, C. Scherjon, K. Warkentin, H. Richter, J.N. Burghartz, “High Dynamic Range CMOS Imager Technologies for Biomedical Applications,” IEEE J. Solid-State Circuits, vol.44, no.1, pp.281-289, Jan. 2009
    [4] S.U. Ay, “A 1.32pW/frame•pixel 1.2V CMOS energy-harvesting and imaging (EHI) APS imager,” in Proc. IEEE ISSCC Dig. Tech. Papers, pp.116-118, Feb. 2011
    [5] J. Ohta, Smart CMOS Imager Sensors and Applications, CRC Press
    [6] P. J. W. Noble, “Self-scanned silicon image detector arrays,” IEEE Trans. Electron Devices, vol. ED-15, no. 4, pp. 202-209, Apr. 1968
    [7] A. El Gamal and H. Eltoukhy, “Cmos image sensors,” IEEE Circuits Devices Mag., vol. 21, no. 3, pp. 6–20, May/Jun. 2005
    [8] P. Noble, “Self-scanned image detector arrays,” IEEE Trans. Electron Devices, vol. 15, no. 4, pp. 202–209, Apr. 1968

    [9] E. Fossum, “Active pixel sensors: Are ccd’s dinosaurs?” in Proc. SPIE Charged-Coupled Devices and Solid State Optical Sensors III, vol. 1900, pp. 30–39, 1993
    [10] R. Guidash, T.-H. Lee, P. Lee, D. Sackett, C. Drowley, M. Swenson, L. Arbaugh, R. Hollstein, F. Shapiro, and S. Domer, “A 0.6 μm cmos pinned photodiode color imager technology,” in Proc. Int. Electron Devices Meeting Tech. Dig., pp. 927–929, Dec. 1997
    [11] J.-E. Eklund, C. Svensson, and A. Astrom, “Vlsi implementation of a focal plane image processor-a realization of the near-sensor image processing concept,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 4, no. 3, pp. 322–335, Sep. 1996
    [12] H. Amhaz and G. Sicard, “A high output voltage swing logarithmic image sensor designed with on chip FPN reduction,” in Proc. PRIME, July 2010, pp. 1-4.
    [13] S. Kavadias, B. Dierickx, D. Scheffer, A. Alaerts, D. Uwaerts, and J. Bogaerts, “A logarithmic response CMOS image sensor with on-chip calibration,” IEEE J. Solid-State Circuits, vol. 35, no. 8, pp. 1146-1152, Dec. 2000.
    [14] M. K. Law, A. Bermak, and C. Shi, “A Low-Power Energy-Harvesting Logarithmic CMOS Image Sensor With Reconfigurable Resolution Using Two-Level Quantization Scheme,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.58, no.2, pp. 80-84, Feb. 2011.
    [15] L. W. Lai, C. H. Lai, and Y. C. King, “A novel logarithmic response CMOS image sensor with high output voltage swing and in-pixel fixed-pattern noise reduction,” IEEE Sensors J., vol.4, no.1, pp. 122-126, Feb. 2004.
    [16] M. Loose, K. Meier, and J. Schemmel, “A self-calibrating single-chip CMOS camera with logarithmic response,” IEEE J. Solid-State Circuits, vol.36, no.4, pp. 586-596, Apr. 2001.
    [17] D. Das, H. J. Mills, and S. Collins, “A wide dynamic range CMOS image sensor with the optimum photoresponse per pixel,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), May. 2011, pp. 1560-1563.
    [18] D. Das and S. Collins, “A wide dynamic range integrating pixel with an improved low light sensitivity,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), May. 2010, pp. 4261-4264.
    [19] B. Choubey, S. Aoyama, D. Joseph, S. Otim, and S. Collins, “An electronic calibration scheme for logarithmic CMOS pixels,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), May. 2004, pp. 856-859.
    [20] B. Choubey, S. Aoyama, S. Otim, D. Joseph, and S. Collins, “An Electronic-Calibration Scheme for Logarithmic CMOS Pixels,” IEEE Sensors J., vol.6, no.4, pp. 950-956, Aug. 2006.
    [21] H. Y. Cheng, B. Choubey, and S. Collins, “An Integrating Wide Dynamic-Range Image Sensor With a Logarithmic Response,” IEEE Trans. Electron Devices, vol.56, no.11, pp. 2423-2428, Nov. 2009.
    [22] S. Decker, R. D. McGrath, K. Brehmer, and C. G. Sodini, “A 256×256 CMOS imaging array with wide dynamic range pixels and column-parallel digital output,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2081-2091, Dec. 1998.
    [23] R. Oi, and K. Aizawa, “Wide dynamic range imaging by sensitivity adjustable CMOS image sensor,” in Proc. ICIP, Sep. 2003, pp. 583-586.
    [24] N. Akahane, S. Sugawa, S. Adachi, K. Mori, T. Ishiuchi, and K. Mizobuchi, “A sensitivity and linearity improvement of a 100-dB dynamic range CMOS image sensor using a lateral overflow integration capacitor,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 851-858, Apr. 2006.

    [25] Y. Muramatsu, S. Kurosawa, M. Furumiya, H. Ohkubo, and Y. Nakashiba, “A Signal-Processing CMOS Image Sensor using Simple Analog Operation,” in Proc. IEEE ISSCC Dig. Tech. Papers, 2001, pp. 98-99.
    [26] S.T. Smith, P. Zalud, J. Kalinowski, N.J. McCaffrey, P.A. Levine, and M.L. Lin. “BLINC: a 640 × 480 CMOS active pixel video camera with adaptive digital processing, extended optical dynamic range, and miniature form factor,” in Proc. SPIE, vol. 4306, pp. 41-49, Jan. 2001.
    [27] K.P. Frohmader, “A novel MOS compatible light intensity-to-frequency converter suited for monolithic integration,” IEEE J. Solid-State Circuits, 17(3):588–591, Jun. 1982
    [28] X. Liu and A. El Gamal, “Photocurrent Estimation for a Self-Reset CMOS Image Sensor,” in Proc. SPIE, volume 4669, pp. 304–312, San Jose, CA, 2002
    [29] V. Brajovic and T. Kanade, “A sorting image sensor: An example of massively parallel intensity-to-time processing for low-latency computational sensors,” in Proc. IEEE Int’l Conf. Robotics & Automation, pp. 1638–1643, Minneapolis, MN, Apr. 1996
    [30] R. M¨uller, “I2/L timing circuit for the 1 ms-10 s range,” IEEE J. Solid-State Circuits, 12(2):139–143, Apr. 1977
    [31] M. T. Chung, “An Ultra-Low Voltage 0.5V PWM CMOS Imager with Dynamic Range Extension and Noise Suppression,” National Tsing Hua University, May. 2012.
    [32] K. Mabuchi, N. Nakamura, E. Funatsu, T. Abe, T. Umeda, T. Hoshino, R. Suzuki, and H. Sumi, “CMOS image sensor using a floating diffusion driving buried photodiode,” in Proc. IEEE ISSCC Dig. Tech. Papers, pp. 112–516, Feb. 2004

    [33] M. Mase, S. Kawahito, M. Sasaki, Y. Wakamori, and M. Furuta. “A Wide Dynamic Range CMOS Image Sensor with Multiple Exposure-Time Signal Outputs and 12-bit Column-Parallel Cyclic AD Converters,” IEEE J. Solid- State Circuits, 40(12):2787–2795, Dec. 2005
    [34] P. Acosta-Serafini, I. Masaki, and C. Sodini, “A 1/3" VGA linear wide dynamic range CMOS image sensor implementing a predictive multiple sampling algorithm with overlapping integration intervals,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1487-1496, Sep. 2004
    [35] M. Sasaki, M. Mase, S. Kawahito, and Y. Tadokoro, “A wide dynamic range CMOS image sensor with multiple short-time exposures,” in Proc. IEEE Sensors, volume 2, pp. 967–972, Oct. 2004
    [36] P. Jong-Ho, M. Mitsuhito, K. Shoji, S. Masaaki, W. Yasuo, and O. Yukihiro, “A 142 dB dynamic range CMOS image sensor with multiple exposure time signals,” in Proc. IEEE A-SSCC. Tech. Papers, Nov. 2005, pp. 85–88.
    [37] M. Mase, S. Kawahito, M. Sasaki, and Y. Wakamori, “A 19.5b dynamic range CMOS image sensor with 12b column-parallel cyclic A/D converters,” in Proc. IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, Feb. 2005, pp. 350–351
    [38] M. Sasaki, M. Mase, S. Kawahito, and Y. Tadokoro, “A wide dynamic range CMOS image sensor with multiple short-time exposures,” in Proc. IEEE Sens. Conf., Oct. 2004, pp. 967–972.
    [39] L. Xinqiao and A. El Gamal, “Synthesis of high dynamic range motion blur free image from multiple captures,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 50, no. 4, pp. 530–539, Apr. 2003.
    [40] O. Yadid-Pecht and E. R. Fossum, “Wide intrascene dynamic range CMOS APS using dual sampling,” IEEE Trans. Electron Devices, vol. 44, no. 10, pp. 1721–1723, Oct. 1997.
    [41] S. Sugawa, N. Akahane, S. Adachi, K. Mori, T. Ishiuchi, and K. Mizobuchi, “A 100 dB dynamic range CMOS image sensor using a lateral overflow integration capacitor,” in Proc. IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, Feb. 2005, pp. 352–353.
    [42] K. Dongsoo, C. Youngcheol, C. Jihyun, and H. Gunhee, “A dual-capture wide dynamic range CMOS image sensor using floating-diffusion capacitor,” IEEE Trans. Electron Devices, vol. 55, no. 10, pp. 2590–2594, Oct. 2008.
    [43] Y. Oike, A. Toda, T. Taura, A. Kato, H. Sato, M. Kasai, and T. Narabu, “A 121.8 dB dynamic range CMOS image sensor using pixel-variation-free midpoint potential drive and overlapping multiple exposures,” in Proc. Int. Image Sens. Workshop, Jun. 2007, pp. 30–33.
    [44] L.W. Huang, A 1.8V Readout Integrated Circuit with Adaptive Transimpedance Control Amplifier for IR Focal Plane Arrays, National Tsing Hua University, Oct. 2011
    [45] Xinyang Wang, “Noise in Sub-Micron CMOS Image Sensors”, Doctor thesis, Delft University of Technology, page 25, 2008, ISBN: 9789081331647.
    [46] M.F. Snoeij, A.J.P. Theuwissen, K.A.A. Makinwa, and J.H. Huijsing, “A CMOS Imager With Column-Level ADC Using Dynamic Column Fixed-Pattern Noise Reduction” in IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 3007-3015, Dec. 2006

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE