研究生: |
葉怡君 Yeh, Yi-Chun |
---|---|
論文名稱: |
串聯反式高分子太陽能電池中間層結構之研究 Studies on interlayer structure of invert tandem polymer solar cell |
指導教授: |
陳壽安
Chen, Show-An |
口試委員: |
郭欽湊
廖建勛 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 高分子太陽能電池 、串聯 、反式 、中間層 |
外文關鍵詞: | polymer solar cell, tandem, invert, interlayer |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在近年來由於人類對於石油替代能源的重視,因此高分子太陽能電池的發展變成為一個重要的課題。對於高分子太陽能電池而言,提升其光電轉換效率始終是大家努力的目標。由於反式結構以高功函數金屬為陽極,可具有較佳的壽命以及操作穩定性,為提升其電壓以及減少光的損失,近年來串聯式太陽能電池(Tandem Solar Cell)逐漸成為大家研究的方向。然而在反式串聯太陽能電池中,文獻中多以金屬氧化物、金屬奈米粒子做為連接兩單層元件之中間層(Interlayer)。
在本論文的第一部分中,以文獻中相同條件,製作電子傳輸層氧化鉬(MoO3),並以鋁金屬連接溶膠凝膠法製備之電子傳輸層氧化鋅(ZnO-sol),作為反式串聯太陽能電池的中間層之數據無法再現,且中間層出現破裂或是皺摺狀況,研判是以溶膠凝膠法製備之氧化鋅在燒結過程中對中間層之其他材料造成破壞。
第二部分我們將中間層更換為MoO3/Ag/ZnO-sol,期待以銀金屬較良好的延展性可以改善中間層破裂的現象。然而從氧化鋅燒結過後之光學顯微鏡圖中即可看見元見表面出現龜裂紋路,塗佈第二層活性層後中間層便出現破裂的狀況。未經過燒結的ZnO-sol表面沒有龜裂紋路,但在塗佈第二層活性層後亦出現破裂的狀況。因此我們使用Ag/Al/ZnO-sol做為元件中間層並且比較有無ZnO-sol的元件在製程中的完整性,發現無論有無ZnO-sol均會出現破裂的情況。因此調整ZnO-sol燒結時間,結果不經過燒結的膜最完整,然而溶膠凝膠法必須經過燒結才可形成氧化鋅。因此我們將氧化鋅製程換成以氧化鋅奈米粒子(ZnO-np)丁醇溶液塗佈後加熱去除殘餘溶劑,發現在相同條件下,以PEDOT/Ag/ZnO-sol和PEDOT/Ag/ZnO-np做為中間層有極大的差異。以ZnO-np做為電子傳輸層之元件開環電壓可達1.15V,以ZnO-sol做為電子傳輸層的元件則只有0.86V。推測因為元件中部分面積出現破裂造成部分短路,因此電壓未接近相加之效果。
由於最初ZnO-np的元件製備過程中,沒有銀做為連接層的元件在塗膜時偶而會出現破洞,因此我們比較銀連接層對於元件的影響,分別製作PEDOT/Ag/ZnO-np和PEDOT/ZnO-np的元件比較其效率以及元件表現。結果發現沒有銀做為連接層的元件有較高的效率(3.34%),以1nm銀做為連接層的元件則只有2.32%,推測是銀的穿透度造成第二層活性層的吸光量減少,導致元件的電流密度降低,因此效率表現不佳。
本論文最後一部份我們使用Ca金屬取代氧化鋅做為電子傳輸層,期待以Ca取代氧化鋅後,減少塗膜以及加熱對於元件的損害,但元件的開環電壓卻只有約0.6V,推測是鈣金屬蒸鍍後不易刮除,可能造成中間層與電極接觸而產生單層短路的狀況。
In recent years, polymer solar cells have become an important issue, because of attention to alternative and green energy resources. For polymer solar cells, to enhance the photoelectric conversion efficiency is always the goal of all efforts. The invert polymer solar cells with a high work function metal as the anode can have a better durability and operational stability. In order to enhance the open-circuit voltage and reduce the loss of light, tandem cell gradually becomes an important issue. In the literature, usually use metal oxide and nano-particles for interlayer.
First, we repeat the experiments, use MoO3, Al, and ZnO from sol-gel process in the article. But the surface of the device cracked after spin-coating of the 2nd active layer. We speculate that the heating process of ZnO-sol may cause damage to the interlayer.
In the second part of this thesis, we replaced Al by Ag. Because Ag have better ductility, and it may prevent the surface from cracking. However we can see from the diagram of the optical microscope after the sintering of zinc oxide, some crack lines appears on the diagram, coating of the second active layer will rupture the status. There are no craking lines on the ZnO-sol surface without sintering, but also shows a cracking line on the surface after coating the second active layer. Therefore, we used Ag/ Al/ ZnO-sol as a component the interlayer and discuss the integrity of whether the components of the ZnO-sol in the manufacturing process. We found that no matter we use the ZnO-sol as electron transport layer or not, the surface still broken. Therefore, adjusting the ZnO-sol sintering time, we can see that the most complete film is under the process without sintering. However, the sol-gel method must have sintering for the formation of zinc oxide. Therefore we have the zinc oxide process replaced by butanol solution coating of zinc oxide nanoparticles (ZnO-np) and heated to remove residual solvent. We found that under the same condition and just change ZnO-sol into ZnO-np, the open-circuit voltage for ZnO-sol device is just 0.86 V. But for ZnO-np, the Voc is 1.15V. We speculate that some tiny cracking may cause the device partly short, and then the voltage cannot show the effect. Due to the initial experiment of the ZnO-np preparation process, there is no silver as a interconnection layer, some tiny holes appeared occasionally on the film. So we compare the silver connection layer in the device that interlayers are PEDOT/ Ag/ ZnO-np and PEDOT/ ZnO-np component efficiency and component performance. The results shows that, the device without silver layer in the interconnection layer has a higher efficiency (3.34%), when add 1nm silver as the interconnection layer the efficiency is only 2.32%, suggesting that the light penetrated through silver caused the second active layer, which resulted in the second active layer can absorb less light, resulting in lower current density of components, therefore reducing efficiency.
At last, we used Ca metal to replace the zinc oxide as the electron transport layer, and hope that when the zinc oxide is replaced by Ca can reduce the damage of the coating and heating process. But the open-loop voltage only about 0.6 volts, presumably after the deposition of calcium metal difficult to scrape, and may result in the intermediate layer and the electrode contact to produce single-layer short-circuit conditions.
[1] C. J. Brabec, F. Padinger, J. C. Hummelen, R. A. J. Janssen and N. S. Sariciftci, Synth. Metals, 1999, 102, 861.
[2] S. E. Shaheen, R. Radspinner, N. Peyghambarian and G. E. Jabbour, Appl. Phys. Lett., 2001, 79, 2996.
[3] C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater., 2001, 11, 15.
[4] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, Science, 2007, 317, 222.
[5] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses1, M. Leclerc, K. Lee and A. J. Heeger, Nat. Photonics., 2009, 3, 297.
[6] H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu and G. Li, Nat. Photonics., 2009, 3, 649.
[7] C. Piliego, T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge and J. M. J. Frechet, J. Am. Chem. Soc., 2010, 132, 7595.
[8] J. C. W. Chien, “Polyacetylene:Chemistry, Physics, and Material Science,” Academic Press, Orlando (1984).
[9] A. S. Wood, “Tapping the power of intrinsic conductivity”, Modern Plastics Int., Aug. (1991) 33.
[10] M. Pope, H. Kallmann and P. Magnante, J. Chem. Phys., 1963, 38, 2042.
[11] C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett., 1987, 51, 913.
[12] A. Moliton and J.-M. Nunzi, Polym. Int., 2006, 55, 583.
[13] M. Knupfer, Appl. Phys. A, 2003, 77, 623.
[14] J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti and A. B. Holmes, Appl. Phys. Lett., 1996, 68, 3120.
[15] M. Theander, A. Yartsev, D. Zigmantas, V. Sundstrom, W. Mammo, M. R. Andersson and O. Ingänas, Phy. Rev. B, 2000, 61, 12957.
[16] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudi, Science, 1992, 258, 1474.
[17] P. Peumans and S. R. Forrest, Appl. Phys. Lett., 2001, 79, 126.
[18] C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci and P. Denk, Appl. Phys. Lett., 2002, 80, 1288.
[19] H. Hoppe and N. S. Sariciftci, Adv. Polym. Sci., 2008, 214,1.
[20] H. Hoppe and N. S. Sariciftci, J. Mater. Chem., 2006, 16, 45.
[21] X. Yang and J. Loos, Macromolecules, 2007, 40, 1353
[22] G. Li, V. Shrotriya, Y. Yao, and Y. Yang, J. Appl. Phys., 2005, 98, 043704
[23] D. Chirvase, J. Parisi, J. CHummelen and V. Dyakonov, Nanotechnology, 2004, 15, 1317
[24] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, Adv. Funct. Mater., 2001, 11, 374.
[25] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, J. Appl. Phys., 2003, 94, 6849.
[26] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, Adv. Funct. Mater., 2001, 11, 374.
[27] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, J. Appl. Phys., 2003, 94, 6849.
[28] R. M. Izatt, J. S. Bradshaw, S. A. Nielsen, J. D. Lamb, and J. J. Christense, Chem. Rev. 1985, 85, 271–339.
[29] G. W. Gokel, D. M. Goli, C. Minganti, and L. Echegoyen, J. Am. Chem. Soc. 1983, 105, 6186–6188.
[30] Y. Yakeda, Y. Ohyagi, S. Akabori, Bull. Chem. Soc. Jpn. 1984, 57, 3381–3385.
[31] H. P. Hopkins, Jr., and A. B. Norman, J. Phys. Chem. 1980, 84, 309–314.
[32] K. M. Coakley and M. D. McGehee, Chem. Mater., 2004, 16, 4533.
[33] C. W. Tang, Appl. Phys. Lett., 1986, 48, 183.
[34] N. S. Sariciftci, D. Braun, and C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, Appt. Phys. Lett., 1993, 62, 585.
[35] G. Yu, J. Gao, J. C. Hummelen, F. Wudi, A. J. Heeger, Science, 1995, 270,1789.
[36] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater., 2005, 15, 1617.
[37] P. Schilinsky, U. Asawapirom, U. Scherf, M. Biele, and C. J. Brabec, Chem. Mater., 2005, 17, 2175.
[38] W. Ma, J. Y. Kim, K. Lee, A. J. Heeger, Macromol. Rapid Commun. 2007, 28, 1776.
[39] Y. Y. Kim, S. Cook, S. M. Tuladhr, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C.-S. Ha and M. Ree, Nat. Mater., 2006, 5, 197.
[40] F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Adv. Funct. Mater., 2003, 13, 85.
[41] W. Ma, J. Y. Kim, K. Lee, A. J. Heeger, Macromol.Rapid Commun. 2007, 28, 1776.
[42] M. Dante, J. Peet and T. Q. Nguyen, J.Phys. Chem., 2008, 112, 7241.
[43] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, Nat. Mater., 2005, 4, 864.
[44] A. J. Moulé and K. Meerholz, Adv. Mater., 2008, 20, 240.
[45] J. Peet, C. Soci, R. C. Coffin, T. Q. Nguyen, A. Mikhailovsky, D. Moses and G. C. Bazan, Appl. Phys. Lett., 2006, 89, 252105.
[46] V. Shrotriya, G. Li, Y. Yao, C. W. Chu, and Y. Yang, Appl. Phys. Lett., 2006, 88, 073508.
[47] M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, PNAS, 2008, 105, 2783.
[48] C. J. Ko, Y. K. Lin, F. C. Chen, C. W. Chu, Appl. Phys. Lett., 2007, 90, 063509.
[49] A. W. Hains and T. J. Marks, Appl. Phys. Lett., 2008, 92, 023504.
[50] C. Y. Li, T. C. Wen and T. F. Guo, J. Mater. Chem., 2008, 18, 4478.
[51] J. W. Jung, J. U. Lee, and W. H. Jo, J. Phys. Chem. C, 2010, 114, 633.
[52] V. Shrotriya, G. Li, Y. Yao, C. W. Chu, and Y. Yang, Appl. Phys. Lett., 2006, 88, 073508.
[53] M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, PNAS, 2008, 105, 2783.
[54] S. Han, W. S. Shin, M. Seo, D. Gupta, S. J. Moonb, S. Yoo, Org. Electronics, 2009, 10, 791
[55] X. H. Chen, C. C. Zhao, M. K. Ng, Appl. Phys. Lett. 2008, 93, 123302
[56] X. X. Jiang, H. Xu, L. Yang, M. Shi, M. Wang, H. Z. Chen, Sol. Energy. Mater. Sol. Cells. 2009, 93, 650
[57] J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong and A. J. Heeger, Adv. Mater., 2006, 18, 572.
[58] K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, Adv. Mater., 2007, 19, 2445.
[59] H. L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K.-Y. Jen, Adv. Mater., 2008, 20, 2376.
[60] S. H. Oh, S. I. Na, Jang Jo, B. Lim, D. Vak, and D. Y. Kim, Adv. Funct. Mater., 2010, 20, 12.
[61] Q. Wei, T. Nishizawa, K. Tajima, and K. Hashimoto, Adv. Mater., 2008, 20, 2211.
[62] A. Kumar, G. Li, Z. Hong and Y. Yang, Nanotechnology, 2009, 20, 165202.
[63] C. W. Liang, W. F. Su, and L. Wang, Appl. Phys. Lett., 2009, 95, 133303
[64] M. Yu, F. He, Y. Tang, S. Wang, and Y. Li, D. Zhu, Macromol. Rapid Commun. 2007, 28, 1333–1338.
[65] J. S. Kim, D. T. McQuade, S. K. McHugh, T. M. Swager, Angew. Chem. Int. Ed. 2000, 39, 3868-3872.
[66] Y. Jin, G. C. Bazan, A. J. Heeger, J. Y. Kim, and K. Lee, Appl. Phys. Lett. 2008, 93, 123304.
[67] K. Kawano, N. Ito, T. Nishimori, J. Sakai, Appl. Phys. Lett. 2006, 88, 073514.
[68] A. Hadipour, B. Boer, J. Wildeman, F. B. Kooistra, J. C. Hummelen, M.u G. R. Turbiez, M. M. Wienk, R. A. J. Janssen, P. W. M. Blom, Adv. Funct. Mater. 2006, 16, 1897
[69] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, Science 2007, 317, 222
[70] J. Gilot, M. M. Wienk, R. A. J. Janssen, Adv. Mater. 2010, 22, E67–E71
[71] S. Sista, M.-H. Park, Z. Hong, Y. Wu, J. Hou, W. L. Kwan, G. Li, and Y. Yang, Adv. Mater. 2010, 22, 380.
[72] J. Sakai, K. Kawano, T. Yamanari, T.Taima, Y. Yoshida, A. Fujii, M. Ozaki, Sol. Energy Mater. Sol. Cells 2009, 94, 376.
[73] D.W. Zhao, X. W. Sun, C. Y. Jiang, A. K. K. Kyaw, G. Q. Lo, D. L. Kwong, IEEE Trans. Electron. Devices 2009, 30, 490
[74] S. K. Hau, H.-L. Yip, K.-S. Chen, J. Zou, A. K.-Y. Jen, Appl. Phys. Lett. 2010, 97, 253307.
[75] X. W. Sun, D. W. Zhao, L. Ke, A. K. K. Kyaw, G. Q. Lo, D. L. Kwong, Appl. Phys. Lett. 2010, 97, 053303.
[76] C.-H. Chou , W. L. Kwan , Z. Hong , L.-M. Chen , Y. Yang, Adv. Mater. 2011, 23, 1282.
[77] Yanming Sun, Jung Hwa Seo, Christopher J. Takacs, Jason Seifter, Alan J. Heeger, Adv. Mater., 2011, 23, 1679.
[78] Gilles Dennler, Markus C. Scharber, Tayebeh Ameri, Patrick Denk, Karen Forberich, Christoph Waldauf, and Christoph J. Brabec, Adv. Mater., 2008, 20, 579.