研究生: |
李偉誠 Lee, Wei-Cheng |
---|---|
論文名稱: |
探討擴散峰值影像模型擬合初始值:模擬與大鼠大腦實驗之研究 Investigation on the initial guess value of Diffusion Kurtosis Imaging model fitting:a study of simulation and rat brain experiment |
指導教授: |
王福年
Wang, Fu-Nien |
口試委員: |
劉益瑞
Liu, Yi-Jui 彭旭霞 Peng, Hsu-Hsia |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 擴散磁振造影 、受限制擴散 、擴散峰值造影 、非線性擬和 、事先擬和決定D初始猜值 、殘差直方圖分析 |
外文關鍵詞: | Diffusion MRI, restricted diffusion, DKI, Non-linear fitting method, Pre-fitting initial guess value of D, residual histogram |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
擴散磁振造影用在活體組織中來觀測水分子的擴散狀況,藉此來區別、定量不同組織特性的區域。擴散峰值造影因而被提出來觀察在組織中受限制的情形,也就是解釋在高B值時曲線趨近於平緩的現象。在非線性擬和中,如何選擇一個好的初始值是一個蠻重要的議題。在本篇研究中,我們希望可以找到一個好的初始值範圍、方法來進行擴散峰值造影的非線性擬和。並且在研究中我們提出事先擬和找D初始值的方法會使得所有數值點擬和完全。進而,為了找尋最有效率的K初始值我們進行了時間分析。在本篇研究中,我們發現在大D、小K值下的數據的擬和精準度、準確度不佳。最後,我們探討了擬和成功與失敗條件下的D、K值差距,並且在老鼠腦中會在哪些區域。
Diffusion MRI is a noninvasive MR imaging technique that allows in vivo
characterization and quantification of the molecular water diffusion in tissues. Diffusion kurtosis imaging (DKI) model has been used to describe the restricted diffusion condition in tissue, which showed elevated intensities from the estimation of conventional monoexponential diffusion model in high b-value. And it is essential for processing non-linear fitting procedure by setting a good initial guess value. Few studies were investigated on the initial guess value and it is aimed in our study to get stable fitting DKI initial guess value. Pre-fitting D method was proposed to get a robust fitting result, and some of the fixed initial D guess value also did that. Further, it was performed time analysis to find the fastest initial K guess value. At low SNR, the accuracy and precision of pre-fitting was hampered in the large D, small k data which is non-restriction environment in brain. Moreover, it was explored the failed manual chosen initial D guess value caused error estimation amount and map those region in brain.
1. Einstein A. The theory of the Brownian Motion. Ann Phys-Berlin. 1906;19(2):371-81.
2. Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. Nature reviews Neuroscience. 2003;4(6):469-80.
3. Stejskal EO, Tanner JE. Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient. Journal of Chemical Physics. 1965;42(1):288-+.
4. Le Bihan D. The 'wet mind': water and functional neuroimaging. Physics in medicine and biology. 2007;52(7):R57-90.
5. Le Bihan D. Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure. Radiology. 2013;268(2):318-22.
6. Le Bihan D. Diffusion MRI: what water tells us about the brain. EMBO molecular medicine. 2014;6(5):569-73.
7. Le Bihan D, Iima M. Diffusion Magnetic Resonance Imaging: What Water Tells Us about Biological Tissues. PLoS biology. 2015;13(7):e1002203.
8. Hui ES, Cheung MM, Chan KC, Wu EX. B-value dependence of DTI quantitation and sensitivity in detecting neural tissue changes. NeuroImage. 2010;49(3):2366-74.
9. Wu EX, Cheung MM. MR diffusion kurtosis imaging for neural tissue characterization. NMR in biomedicine. 2010;23(7):836-48.
10. Veraart J, Poot DHJ, Van Hecke W, Blockx I, Van der Linden A, Verhoye M, et al. More Accurate Estimation of Diffusion Tensor Parameters Using Diffusion Kurtosis Imaging. Magnetic resonance in medicine. 2011;65(1):138-45.
11. Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR in biomedicine. 2010;23(7):698-710.
12. Jensen JH, Falangola MF, Hu C, Tabesh A, Rapalino O, Lo C, et al. Preliminary observations of increased diffusional kurtosis in human brain following recent cerebral infarction. NMR in biomedicine. 2011;24(5):452-7.
13. Van Cauter S, Veraart J, Sijbers J, Peeters RR, Himmelreich U, De Keyzer F, et al. Gliomas: diffusion kurtosis MR imaging in grading. Radiology. 2012;263(2):492-501.
14. Rudrapatna SU, Wieloch T, Beirup K, Ruscher K, Mol W, Yanev P, et al. Can diffusion kurtosis imaging improve the sensitivity and specificity of detecting microstructural alterations in brain tissue chronically after experimental stroke? Comparisons with diffusion tensor imaging and histology. NeuroImage. 2014;97:363-73.
15. Lawrence EM, Warren AY, Priest AN, Barrett T, Goldman DA, Gill AB, et al. Evaluating Prostate Cancer Using Fractional Tissue Composition of Radical Prostatectomy Specimens and Pre-Operative Diffusional Kurtosis Magnetic Resonance Imaging. PloS one. 2016;11(7).
16. Raab P, Hattingen E, Franz K, Zanella FE, Lanfermann H. Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Radiology. 2010;254(3):876-81.
17. Hui ES, Fieremans E, Jensen JH, Tabesh A, Feng W, Bonilha L, et al. Stroke assessment with diffusional kurtosis imaging. Stroke; a journal of cerebral circulation. 2012;43(11):2968-73.
18. Hui ES, Du F, Huang S, Shen Q, Duong TQ. Spatiotemporal dynamics of diffusional kurtosis, mean diffusivity and perfusion changes in experimental stroke. Brain research. 2012;1451:100-9.
19. Zhuo JC, Xu S, Proctor JL, Mullins RJ, Simon JZ, Fiskum G, et al. Diffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury. NeuroImage. 2012;59(1):467-77.
20. Blockx I, De Groof G, Verhoye L, Van Audekerke J, Raber K, Poot D, et al. Microstructural changes observed with DKI in a transgenic Huntington rat model: Evidence for abnormal neurodevelopment. NeuroImage. 2012;59(2):957-67.
21. Helpern JA, Adisetiyo V, Falangola MF, Hu C, Di Martino A, Williams K, et al. Preliminary evidence of altered gray and white matter microstructural development in the frontal lobe of adolescents with attention-deficit hyperactivity disorder: a diffusional kurtosis imaging study. Journal of magnetic resonance imaging : JMRI. 2011;33(1):17-23.
22. Kamagata K, Tomiyama H, Hatano T, Motoi Y, Abe O, Shimoji K, et al. A preliminary diffusional kurtosis imaging study of Parkinson disease: comparison with conventional diffusion tensor imaging. Neuroradiology. 2014;56(3):251-8.
23. Coleman TF, Li YY. An interior trust region approach for nonlinear minimization subject to bounds. Siam J Optimiz. 1996;6(2):418-45.
24. Hansen B, Jespersen SN. Kurtosis fractional anisotropy, its contrast and estimation by proxy. Sci Rep-Uk. 2016;6.
25. Cheung MM, Hui ES, Chan KC, Helpern JA, Qi L, Wu EX. Does diffusion kurtosis imaging lead to better neural tissue characterization? A rodent brain maturation study. NeuroImage. 2009;45(2):386-92.
26. Hui ES, Cheung MM, Qi L, Wu EX. Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis. NeuroImage. 2008;42(1):122-34.
27. Attariwala R, Picker W. Whole body MRI: improved lesion detection and characterization with diffusion weighted techniques. Journal of magnetic resonance imaging : JMRI. 2013;38(2):253-68.
28. Kristoffersen A. Estimating non-Gaussian diffusion model parameters in the presence of physiological noise and Rician signal bias. Journal of magnetic resonance imaging : JMRI. 2012;35(1):181-9.
29. Andre ED, Grinberg F, Farrher E, Maximov, II, Shah NJ, Meyer C, et al. Influence of noise correction on intra- and inter-subject variability of quantitative metrics in diffusion kurtosis imaging. PloS one. 2014;9(4):e94531.
30. Sprenger T, Sperl JI, Fernandez B, Golkov V, Eidner I, Samann PG, et al. Bias and precision analysis of diffusional kurtosis imaging for different acquisition schemes. Magnetic resonance in medicine. 2016.
31. Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review. NMR in biomedicine. 2002;15(7-8):456-67.
32. Yang AW, Jensen JH, Hu CC, Tabesh A, Falangola MF, Helpern JA. Effect of cerebral spinal fluid suppression for diffusional kurtosis imaging. Journal of magnetic resonance imaging : JMRI. 2013;37(2):365-71.
33. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168(2):497-505.
34. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magnetic resonance in medicine. 2005;53(6):1432-40.