簡易檢索 / 詳目顯示

研究生: 杜政勳
Du, Chen-Hsun
論文名稱: 薄型矽晶太陽電池之基板與電池製造技術研究
The Substrate and Cell Manufacture Process of Thin Film Crystalline Silicon Solar Cell
指導教授: 葉 哲 良
Yeh, J. Andrew
口試委員: 甘炯耀
Gan, Jon-Yiew
羅丞曜
Lo, Cheng-Yao
余沛慈
Yu, Peichen
蔡松雨
Tsai, Song-Yeu
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 131
中文關鍵詞: 太陽電池結晶矽薄晶片
外文關鍵詞: Solar cell, Crystalline silicon, Thin wafer
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究超薄矽晶太陽電池之製作,尤其是無切割損太陽電池技術的相關技術,以減少矽晶太陽電池的矽材用量,促進矽晶太陽電池的成本之降低。在本論文中,我們首先針對薄型矽晶片的各種特性進行研究,其使用方法包括了電腦元件模擬,以探討矽的塊材品質、表面再結合速率、與晶片厚度對於太陽電池表現之影響,界定晶片薄化所造成的光吸收降低,為影響效率的最大因素。同時以化學減薄的方法製作不同結構的薄晶片太陽電池,包括標準結構太陽電池、選擇性射極太陽電池、以及背面鈍化太陽電池,發現低摻雜射極以及背表面鈍化,皆對於開路電壓及效率的提升有相當的效益,但最大的增益來自背面鈍化太陽電池的背面光反射效果所造成之光電流的提升。
    另外,本論文嘗試了兩種無切割損的晶片及太陽電池製作方式,包括了熱應力圖案轉印以及金屬應力剝除法。熱應力圖案轉印法利用具有圖案化結構的藍寶石基板,在其上沉積矽膜後剝離,可將藍寶石基板的圖案轉印到矽基板上,製作無需光罩的奈米及蜂巢狀光吸收結構。而金屬應力剝除法,可自矽晶片上剝除約40微米的超薄矽層,在去除剝離金屬及玻璃狀殘留物後,配合異質接面太陽電池製程,可將效率提升到14.7%。這個結果提供了我們物理及實驗上的基礎,以做為未來發展無切割損高效率矽晶太陽電池的根基。


    This thesis investigates the fabrication of thin crystalline silicon solar cell, especially the kerf-loss less solar cells. This technology can reduce the silicon usage of c-Si solar cell and decline its cost. In this study, we used the device simulation tool to discuss the effects of silicon bulk lifetime, surface recombination velocity, and wafer thickness to the properties of solar cell, and determined that the decline of light absorption is the main issue of thin crystalline solar cells. We also fabricated thin crystalline silicon solar cell of different structure, such as standard cell, selective emitter cell and PERC cells. The comparison of cell efficiencies showed that light doping emitter and surface passivation can improve the Voc. But the main improvement was due to the Jsc increase caused by the light reflection on the back surface of PERC cells.
    Besides, this study suggested two kind processes of kerf-loss less wafers and cells, including Thermal-stress Induced Pattern Transfer (TIPT) and Stress induced Lift-off Method (SLiM-cut). TIPT method deposited Si thin layer on the patterned sapphire substrate. After exfoliated the Si layer using thermal stress, the pattern on the sapphire substrate was transformed to the Si thin layer. It can be used as the honeycomb surface texture for light absorption without any mask process.
    SLiM-cut method can peeled off a Si thin film around 40m from a thicker substrate. After removing the metal and surface residual on the peeled silicon film, the HJT process was applied on the film to fabricate solar cells. The maximum efficiency of solar cells was up to 14.7%. This result provides a physical and experimental basis to develop non-kerf-loss thin crystalline solar cells whose performance can be further improved in the future.

    Chapter I: Introduction 1 1.1 Background 1 1.2 Physics of crystalline silicon solar cell 3 1.3 Required properties of thin crystalline solar cell 7 1.4 Objectives 10 Chapter II: Review of thin crystalline silicon wafer and cell fabrication methods 12 2.1 Manufacture of thin crystalline silicon substrates 13 2.1.1 Direct wafer cutting 13 2.1.2 Smart cut 15 2.1.3 SLIM cut technology 17 2.1.4 Epitaxial growth silicon 20 2.1.5 Exfoliated epitaxially grown silicon 22 2.2 Improvement of efficiency of thin crystalline silicon solar cells 24 2.2.1 Light trapping 24 2.2.2 Surface passivation 29 2.3 Efficiencies of thin crystalline solar cells with various technologies 34 2.3.1 PERL structure 34 2.3.2 DFT solar cell 35 2.3.3 SLIM cut solar cell 36 2.3.4 Epitaxially grown crystalline solar cell 37 2.3.5 Exfoliated epitaxially grown crystalline solar cell 39 Chapter III: Basic properties of a thin crystalline solar cell 41 3.1 Properties of solar cells with various bulk lifetimes, surface recombination velocity and wafer thicknesses 43 3.2 Basic characterization of thin silicon substrate 49 3.2.1 Measurement of wafer lifetime 50 3.2.2 Optical characterization of thin crystalline silicon solar cell 54 3.3 Summary 56 Chapter IV: Device performance of thin Si solar cell 57 4.1 Electrical characterization of thin crystalline solar cell 57 4.1.1 Standard solar cell 57 4.1.2 Selective emitter solar cell 60 4.1.3 Rear side passivated solar cell 64 4.2 Summary 69 Chapter V: Fabrication of thin-film crystalline silicon solar cell using thermal stress-induced pattern transfer (TIPT) method 71 5.1 Wafer fabrication using TIPT method 71 5.1.1 Peeling condition of TIPT process 74 5.1.2 Optical properties of TIPT substrate 75 5.2 Cell fabrication using TIPT method 78 5.2.1 Electrical properties of high temperature peeled TIPT cell 78 5.2.2 Electrical properties of low temperature peeled TIPT cell 80 5.3 Summary 83 Chapter VI: Thin crystalline silicon solar cell using stress-induced lift-off method 85 6.1 Wafer fabrication using SLiM cut method 85 6.1.1 Peeling condition of SLiM cut process 86 6.1.2 Surface properties of different orientation exfoliated surface 90 6.2 Cell fabrication using SLiM cut method 95 6.2.1 Hetrojunction solar cell process on SLiM cut thin wafer 95 6.2.2 Surface improvement of SLiM cut solar cell 99 6.2.3 Electrical properties of SLiM cut solar cell 105 6.3 Summary 109 Chapter VII: Conclusion and Future work 110 7.1 Results 110 7.2 Future work 111 References: 113 Author’s Publications list 120 Journal Papers: 120 Conference Papers: 122 Patent 129 Author’s Resume 131

    [1] A. G. Aberle, “Fabrication and characterization of crystalline silicon thin-film materials for solar cells,” Thin Solid Films, vol.511-512, pp.26-34, 2006.
    [2] I. Gordon, F. Dross, V. Depauw, A. Masolin, Y. Qiu, J. Vaes, D. Van Gestel and J. Poortmans, “Three novel ways of making thin-film crystalline-silicon layers on glass for solar cell application,” Solar Energy Materials & Solar Cells, vol.95, pp.S2-S7, 2011.
    [3] SEMI, “International Technology Roadmap for Photovoltaic (ITRPV) 2013 Results”, Revision 1, 24 March 2014.
    [4] Jenny Nelson, “The physics of solar cells”, Imperial College Press, 2003.
    [5] V. Jovanov, J. Ivanchev, and D. Knipp, “Standing wave Spectrometer”, Optics Express, Vol. 18, Issue 2, pp. 426-438, 2010
    [6] G. P. Willeke, “Thin crystalline silicon solar cells,” Solar Energy Materials & Solar Cells, vol.72, pp.191-200, 2002.
    [7] V. Gazuz, M. Scheffler, and R. Auer, “Thin 60m-thick crystalline silicon solar cell on ceramic substrate by Al-bonding,” IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, USA, pp.976-979, May 2006.
    [8] F. Henley, A. Lamm, S. Kang, Z. Liu and L. Tian, “Direct film transfer (DFT) technology for kerf-free silicon wafering,” 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, pp.1090-1093, September 2008
    [9] F. Dross, A. Milhe, Jo Robbeleine, I. Gordon, P-O. Bouchard, G. Beaucarne and J. Poortmans, “SLIM-cut: A kerf-loss-free method for wafering 50m-thin crystalline Si wafers based on stress-induced lift-off ,” 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, pp.1278-1281, September 2008.
    [10] J. Vaes, A. Masolin, A. Pesquera and F, Dross, “SLiM-Cut thin silicon wafering with enhanced crack and stress control”, Proceedings of SPIE - The International Society for Optical Engineering, vol.7772, 777212, 2010.
    [11] F. Dross, A. Milhe, J. Robbelein, I. Gordon, P-O Bouchard, G. Beaucarne and J. Poortmans, “Stress-Induced Lift-off Method for Kerf-Loss-Free Wafering of Ultra-Thin (~50m) Crystalline Si Wafers”, 33rd IEEE Photovoltaic Specialists Conference, San Diego, USA, pp.1-5, 2008.
    [12] A. Masolin, J. Vaes, F. Dross, J. Poortmans and R. Mertens, “Thermal Curing of Crystallogrphic Defects on a SLiM-Cut Silicon Foil”, 35th IEEE Photovoltaic Specialists Conference,, Honolulu, USA, pp.2180-2183, June 2010.
    [13] P. Rosenits, F. Kopp, and S. Reber, “Epitaxially grown crystalline silicon thin-film solar cells reaching 16.5% efficiency with basic cell process,” Thin Solid Films, vol.519, pp.3288-3290, 2011.
    [14] S. Gall and J. Schneider et al., “Larg-grained polycrystalline silicon on glass for thin-film solar cells,” Thin Solid Films, vol.511-512, pp.7-14, 2006.
    [15] L. Carnel, I. Gordon, D. van Gestel, G. Beaucarne and J. Poortmans, “From 1.6 to 8% efficient thin-film polysilicon solar cells,” 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, pp.1880-1883, September 2007.
    [16] P. Prathap, O. Tuzun, D. Madi, and A. Slaoui, “Thin film silicon solar cells by AIC on foreign substrate,” Solar Energy Materials & Solar Cells, vol.95, pp.S44-S52, 2011.
    [17] I. Gordon, S. Vallon, A. Mayolet, G. Beaucarne and J. Poortmans, “Thin-film monocrystalline-silicon solar cells made by a seed layer approach on glass-ceramic substrates,” Solar Energy Materials & Solar Cells, vol.94, pp.381-385, 2010.
    [18] S. Reber, A. Hurrel, A. Eyer, and G. Willeke, “Crystalline silicon thin-film solar cells – recent results at Fraunhofer ISE,” Solar Energy, vol.77, pp.865-875, 2004.
    [19] R. Brendel, K. Feldrapp, R. Horbelt, and R. Auer, “15.4%-efficient and 25 μm-thin crystalline Si solar cell from layer transfer using porous silicon”, phys. stat. sol. (a) 197, No. 2, 497- 501, 2003
    [20] K. Van Nieuwenhuysen, I. Gordon and J. Poortmans, “High-Quality Epitaxial Foils, obtained by a Layer Transfer Process, for Integration in Back-Contacted Solar Cells processed on Glass”, 38th IEEE Photovoltaic Specialists Conference, Austin, USA, pp.1833-1836, June 2012
    [21] H. S. Radhakrishnan, R. Martini, V. Depauw, “Kerfless layer-transfer of thin epitaxial silicon foils using novel multiple layer porous silicon stacks with near 100% detachment yield and large minority carrier diffusion lengths”, Solar Energy Materials & Solar Cells, vol. 135, pp. 113-123, 2015
    [22] K. V. Nieuwenhuysen, T. Bearda, I. Gordon, J. Szlufcik, J. Poortmans, P. Kapur, M. M. Moslehi and M. Wingert et al., “A Manufacturable, Non-plated, Non-Ag Metallization based 20.44% Efficient, 243 cm2 Area, Back Contacted Solar Cell on 40 μm Thick Mono-Crystalline Silicon”, 28th European Photovoltaic Solar Energy Conference and Exhibition, Paris, France, pp.2228-2231, September 2013
    [23] N.-N. Feng, and J. M. Michel et al., “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Transaction on Electron Devices, vol.54, pp.1926-1933, 2007.
    [24] C. Heine, and R. H. Morf., “Submicrometer gratings for solar energy applications,” Applied Optics, vol.34, No.14, pp.2476-2482, 1995.
    [25] Y.-P. Chiou, S.-Y. Wu, and C.-Y. Chen, ”Blaze gratings as light trapping structures for enhancing cell,” 35th IEEE Photovoltaic Specialists Conference, Honolulu, USA, pp.1589-1591, June 2010.
    [26] C. J. J. Tool, A. R. Burgers, P. Manshanden and A. W. weeber, “Effect of wafer thickness on the performance of mc-Si solar cells,” 17th European Photovoltaic Solar Energy Conference, Munich, Germany, 2001.
    [27] V. Perraki, “Modelling of recombination velocity and doping influence in epitaxial silicon solar cells,” Solar Energy Materials & Solar Cells, vol.94, pp.1597-1603, 2010.
    [28] A.Wang, J. Zhao, S.R. Wenham and M.A. Green, “21.5% efficient thin silicon solar cell,” Progress in Photovoltaics: Research and Applications, vol.4, pp.55-58, 1996.
    [29] M.A. Green, “The path to 25% silicon solar cell efficiency: History of silicon cell evolution”, Progress in Photovoltaics 17, PP.183-189, 2009.
    [30] K.V. Nieuwenhuysen, et al., “Epitaxially grown emitters for thin film silicon solar cells result 16% efficiency,” Thin Solid Films”, vol.518, pp.S80-S82, 2010.
    [31] C. J. J. Tool, P. Manshanden, A. R. Burgers, and A. W. Weeber, “Higher efficient for thin film multi crystalline silicon solar cells by improving the rear surface passivation,”29th IEEE Photovoltaic Specialists Conference, New Orleans, USA, pp.304-307, May 2002.
    [32] M. Hofmann, and S. Janz et al., “Recent development in rear-surface passivation at Fraunhofer ISE,” Solar Energy Materials & Solar Cells, vol.93, pp.1074-1078, 2009.
    [33] C.-H. Du, H.-C. Liu and S.-P. Hsu, “Selective Emitter Solar Cell Using Screen Printing and Two Diffusion Steps 34th IEEE Photovoltaic Specialists Conference, pp.646-649, Philadelphia, USA, June 2009.
    [34] M. Koppes and A. F. Stassen, “Low cost selective emitter for multicrystalline solar cells with 0.47% point efficiency gain”, 25th European Photovoltaic Solar Energy Conference and Exhibition, p.1917, September 2010
    [35] C.-H. Du, S.-P. Hsu, Y.-Y. Wang and J. A. Yeh, “Selective Emitter Solar Cell Using Thermal Oxidation for Emitter Etched-Back Process”, 28th European Photovoltaic Solar Energy Conference and Exhibition, pp.1177-1180, Paris, France, September 2013.
    [36] B. Hoex, J. Schmidt, P. Pohl, M.C.M Van de Sanden, W.M.M Kessels, “Silicon surface passivation by atomic layer deposited Al2O3”, Journal of Applied Physics, 104, 044903-12, 2008.
    [37] J. Irikawa, Ms. Kida, T. Watahiki and M. Konagai, “Effects of annealing and atomic treatment on aluminum oxide passivation layers for crystalline silicon solar cells”, Japanese Journal of Applied Physics 50, 012301-5, 2011.
    [38] B. Hoex, J.J.H. Gielis, M.C.M Van de Sanden, W.M.M Kessels, “On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3”, Journal of Applied Physics, 104, 113703-10, 2008.
    [39] S. Grover, C.W. J. V. Li, D. C. Bobela, J. Bornstein and D. L. Young, “Device physics of heteroepitaxial film c-Si heterojunction solar cells”, IEEE Journal of Photovoltaics, vol. 3, No. 1, pp.230-235, 2012.
    [40] Y.-C. Lee, S.-C. Tseng, H.-L. Chen, C.-C. Yu, W.-L. Cheng, C.-H. Du and C.-H. Lin, “Using autocloning effects to develop broadbandwidth, omnidirectional antireflection structures for silicon solar cells,” Optics Express, Vol. 18, No. 103, pp.A421-A431, 2010.
    [41] D. Z. Dimitrov, C.-H. Lin, C.-H. Du, C.-W. Lan, “Nanotextured crystalline silicon solar cells”, Phys. Status Solidi A-Appl. Mat., 208 (12), pp.2926-2933, 2011.
    [42] R. Martini, S. Granata, V. Depauw, M. Gonzalez, I. Gordon and J. Poortmans, “Solar cell processing of foil produced by epoxy-induced spalling of silicon” Energy Procedia 55, 879-884, 2014.
    [43] R. Martini, M. Gonzalez, F. Dross, A. Masolin, J. Vaes, D. Frederickx and J. Poortmans, “Epoxy-induced spalling of Silicon”, Energy Procedia 27, 567-572, 2012.
    [44] J. Dugas, “3D modelling of a reverse cell made with improved multicrystalline silicon wafers”, Solar Energy Material and Solar Cells, vol.32, pp.71-88, 1994.
    [45] P. Bellanger and J. Serra, “Room temperature spalling of thin silicon foils using a kerfless technique” Energy Procedia 55, 873-878, 2014.
    [46] R. A. Rao, L. Mathewl and Q. Wang et al., “A Low Cost Kerfless Thin Crystalline Si Solar Cell Technology”, 38th IEEE Photovoltaic Specialists Conference, Austin, USA, pp.1837-1840, 2012.
    [47] R. A. Rao, L. Mathew and S. Banerjee et al., “A Novel Low Cost 25μm Thin Exfoliated Monocrystalline Si Solar Cell Technology”, 37th IEEE Photovoltaic Specialists Conference, Seattle, USA, pp.1504-1507, June 2011.
    [48] M. Hörteis, T. Gutberlet, A. Reller, and S. W. Glunz High-Temperature Contact Formation on n-Type Silicon: Basic Reactions and Contact Model for Seed-Layer Contacts, “High-Temperature Contact Formation on n-Type Silicon: Basic Reactions and Contact Model for Seed-Layer Contacts”, Advanced Function Materials, vol.20, pp.476-484, 2010.
    [49] C.-H Lin, S.-Y. Tsai, S.-P. Hsu, and M.-H. Hsieh, “Investigation of Ag-bulk/glassy-phase/Si heterostructures of printed Ag contacts on crystalline Si solar cells”, Solar Energy Material and Solar Cell, vol.92, pp.1011-1015, 2008.
    [50] D. M. HuljiC, C. Ballif, A. Hessler-Wyser, and G. Willeke, “Microstructural analyses of Ag thick-film contacts on n-type silicon emitters”, 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, pp.83-86, 2003.
    [51] M. R. Page, E. Iwaniczko, Y. Xu, Q. Wang, Y. Yan, L. Roybal, H. M. Branz, and T. H. Wang, “Well Passivated a-Si:H Back Contacts for Double-Heterojunction Silicon Solar Cells”, IEEE 4th World Conference on Photovoltaic Energy Conversion, Hawaii, p.1485, 2006.
    [52] A. Laades, J. Brauer, U. Stürzebecher, K. Neckermann, K. Klimm, M. Blech, K. Lauer, A. Lawerenz, H. Angermann, “Wet-Chemical Treatment of Solar Grade CZ Silicon Prior to Surface Passivation”, 24th European Photovoltaic Solar Energy Conference and Exhibition, pp.1640-1644, Hamburg, Germany, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE