簡易檢索 / 詳目顯示

研究生: 蕭小鳳
Hsiao, Hsiao-Feng
論文名稱: 鐵酸鉍、鐵鈰酸鉍及氧化鈰單一及複合薄膜之研究
指導教授: 胡塵滌
Hu, Chen-Ti
呂正傑
Leu, Ching-Chich
口試委員: 呂正傑
簡昭欣
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 205
中文關鍵詞: 鐵酸鉍薄膜溶膠溶液法複鐵式鐵電性漏電流密度
外文關鍵詞: BiFeO3 thin film, sol–gel solution, Multiferroic, Ferroelectric, leakage current density
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用溶膠凝膠法(Sol-gel method),製備複鐵式鐵酸鉍薄膜(BiFeO3)。在當前BFO薄膜研究文獻中,報導其在室溫下具有較低的漏電阻抗性,使其在研究與應用方面皆遭受限制。因此在本篇論文探討摻雜稀土元素鈰Ce進入BFO薄膜,藉由具有四價及三價的鈰離子取代鉍離子來改善薄膜的漏電流問題;再將具有Ce摻雜的Bi1.05-xCexFeO3薄膜與BiFeO3薄膜作複合層結構,以及另一部分為加入一層氧化鈰的緩衝層在Pt底電極與薄膜之間,分別探討薄膜結晶結構與鐵電、鐵磁性質間的關係。
    由實驗結果可得知,Ce的摻雜、複合層結構、氧化鈰緩衝層皆具有改善薄膜漏電流密度影響的效果,量測所得值約介於10-8至10-6 A/cm2之間,其中複合層結構具有減緩接近高電場時漏電急遽上升的現象;根據電場-電流密度圖形分析,薄膜漏電機制應為Space charge limited conduction的導電機制。在電滯曲線圖形上,夾心結構BCFO/BFO/BCFO(1/4/1)與BFO/BCFO(8/1) 550˚C退火試片呈現似飽和電滯曲線的形狀,並且BFO/BCFO(8/1) 550˚C 此組試片,在外加電場200kV/cm下所得2Pr值可達13.80μC/cm2,此較佳鐵電特性可能與較低漏電流有關。而加入緩衝層可使純BFO薄膜極化量微幅增加, 2Ec值下降。


    第一章 緒論 5 1-1 前言 5 1-2 研究動機與方向 6 第二章 文獻回顧 8 2-1 鐵電薄膜之簡介 (Ferroelectric thin film) 8 2-1-1 鐵電薄膜之歷史演進[1] 8 2-1-2 鐵電材料之結構[2,3] 8 2-1-3 鐵電特性[6,7] 9 2-2介電性質簡介 12 2-2-1 極化現象與介電常數 12 2-2-2 極化機制 13 2-2-3 漏電流機制[14-16] 14 2-3磁性原理簡介[20-23] 17 2-3-1磁性的來源 17 2-3-2磁滯曲線 18 2-3-3居禮溫度(Curie temperature) 18 2-3-4尼爾溫度(Neel temperature) 19 2-3-5磁性的分類 19 2-4複鐵式性質(Multiferro properties) 22 2-4-1複鐵式薄膜之文獻回顧 24 2-4-2複鐵式材料(Multiferro materials) 26 2-5鉍酸鐵(BiFeO3)系統 28 2-5-1鉍酸鐵的結構與特性 28 2-5-2鉍酸鐵研究文獻回顧 31 2-5-2-1鉍酸鐵摻雜稀土元素的研究文獻 33 2-5-2-2鉍酸鐵複合層的研究文獻 36 2-6薄膜之製備[102] 38 2-6-1 溶膠—凝膠法(Sol-Gel) 39 2-6-2 配方溶液的配製 39 2-6-3 薄膜披覆製程 41 2-6-4 低溫焦化熱處理 42 2-6-5 高溫結晶與緻密化處理 43 第三章 實驗程序 60 3-1 基板的備製 60 3-1-1 擴散阻絕層及黏著層的製備 60 3-1-2 白金底電極的製備 61 3-2 BFO複鐵薄膜製備 62 3-2-1 BFO溶膠的製備 62 3-2-2 CeOx緩衝層溶膠的製備 64 3-2-3 BFO薄膜的鍍製及薄膜複合的製程 64 3-2-4 薄膜熱處理 65 3-3 鐵電薄膜性質之量測與分析 65 3-3-1 物性分析 65 3-3-2 電性量測 67 3-4 磁性分析 68 第四章 結果與討論 75 4-0 EDS 化學成分分析 75 4-1 XRD晶體結構分析 75 4-1-1 BFO、BCFO的XRD分析 76 4-1-2 BFO與BCFO複合堆疊薄膜的XRD分析 78 4-1-3 加入緩衝層BFO薄膜的XRD分析 79 4-1-4 薄膜X光繞射結晶優選方向與鐵電特性間之關係分析 80 4-2 表面顯微結構、粗糙度分析與SEM橫截面 81 4-2-1 BFO、BCFO之表面及橫截面形貌分析 81 4-2-2 BFO與BCFO複合層堆疊薄膜之表面及橫截面形貌分析 83 4-2-3 加入緩衝層BFO薄膜之表面及橫截面形貌分析 85 4-2-4 薄膜粗糙度的分析 86 4-3 電流密度量測 87 4-3-1 BFO、BCFO之電流密度量測 87 4-3-2 BFO與BCFO複合堆疊薄膜之電流密度量測 89 4-3-3 加入緩衝層BFO薄膜之電流密度量測 90 4-4 介電特性量測 91 4-4-1 BFO、BCFO之介電特性 91 4-4-2 BFO與BCFO複合堆疊薄膜之介電特性 92 4-4-3 加入緩衝層BFO薄膜之介電特性 94 4-5 鐵電特性之量測 94 4-5-1 BFO、BCFO之鐵電特性量測 94 4-5-2 BFO與BCFO複合層薄膜之鐵電特性量測 95 4-5-3 加入緩衝層BFO薄膜之鐵電特性量測 97 4-6 SQUID磁性分析 97 4-6-1 Pt/TiOx/SiO2/Si基板之磁性分析 98 4-6-2 BFO、BCFO之磁性分析 98 4-6-3 BFO與BCFO複合堆疊薄膜之磁性分析 99 4-6-4 加入緩衝層BFO薄膜之磁性分析 99 第五章 結論 191

    [1] 陳瀅如,"添加微細粉對鈦酸鉛鍍膜製程與特性之研究",清華大學碩士論文 (1998)
    [2] 鄭晃忠、史德智,"極大型機鐵電路之鐵電材料",電子月刊 5 (6) (1999)
    [3] 陳銘森,"鎳酸鑭電極對鋯鈦酸鉛溶凝膠製作與特性影響之研究",清華大學博士論文 (1996)
    [4] Y. H. Xu,“Ferroelectric Materials and Their Application”, North-Holland , NewYork, 102(1991).
    [5] 江長凌,林煥祐,朱智謙,”半導體製程中高介電(High K)材料的介紹”,台灣大學化研所.
    [6] 鍾為烈,鐵電體物理學 (科學出版社,1996).
    [7] Y. Xu,” Ferroeletric Material and their application“ North-Holland, Amsterdam, (1991).
    [8] M. E. Lines and A. M.Glass, Principle and applications of ferroelectrics and related materials, (Oxford University press. New York,2001).
    [9] 鐘金峰,”Preparation of BiFeO3 thin films by chemical solution deposition method “,清華大學碩士論文 (2006)
    [10] A. J. Moulson and J. M. Herbert, “Electroceramics, materials, properties and application”, p.52-55 and p.61-62 (1990).
    [11] 李雅明,”固態電子學”,全華科技 (1995)
    [12] 吳朗,”電子陶瓷-介電”,全新資訊圖書 (1994)
    [13] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, 2nd Ed. , John Wiley and Sons, New York, 1976.
    [14] Y. S. Yang, S. J. Lee, S. H. Kim, B. G. Chae, and M. S. Jang, “Schottky Barrier Effects in Electronic Conduction of Sol-Gel derived Lead Zirconate Titanate Thin Film Capactors” ,Journal of Applied Physics, Vol. 84 No.9 p5005-5011(1998).
    [15] I. Stolichnov, and A. Tagantsev, “Space-Charge Influenced-Injection Model for Conduction on Pb(ZrxTi1-x)O3 Thin Film”, Journal of Applied Physics, Vol. 84 No.6 p3216-3225 (1998).
    [16] W. L. Warren, D. Dimos, and R. M. Waser, “Degradation Mechanisms in Ferroelectric and High-Permittivity Perovskites”, MRS Bulletin, July p.40-45 (1996).
    [17] M. Ohring, “The Materials Science of Thin Films, published by Academic Press”, Inc, (1992).
    [18] D. Ivanova, M. Caron, L. Ouellet, S Blain, N.Hendrick, J. Currie, ” Structural and Dielectric Preoperties of Spin-On Barium Strontium Titanate Thin Films”, J. Appl. Phys., 77[6]2666-2671 .
    [19] Wolf, Stanley and Richard N. Tauber, Silicon Processing for the VLSI Era , Lattice Press, Sunset Beach, CA, (2000). pages 202-206.
    [20] C. kittle, Introduction to solid state physics, 7th ed. John Wilry & Sons, New York, (1996).
    [21] 張煦,李學養磁性物理學 (聯經,台北市,1982)
    [22] 李景明,張慶瑞,磁性技術手冊,第2章,5,民國91年
    [23] J.A.C.Bland and B.Heinrich, "Ultrathin Magnetic Structure I ", Springer-Verlag, Chap.3 ,1994.
    [24] 江明彥,”Synthesis and Magnetic Investigation of NiO/NiFe2O4 Nanocomposites”,南台科技大學碩士論文 (2005)
    [25] Eerenstein, W., N. D. Mathur, et al. (2006). "Multiferroic and magnetoelectric materials." Nature 442(7104): 759-765.
    [26] B. B. Van Aken, J. P. Rivera, H. Schmid, M. Fiebig, Nature 449 (2007) 702.
    [27] Singh, M. K.; Yang, Y.; Takoudisa, C. G. Coord. "Synthesis of multifunctional multiferroic materials from metalorganics."Chem. Rev. 2009, 253, 2920
    [28] G.Srinivasan, E. T. Rasmussen, B. J. Levin, and R. Hayes, " Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides" Phys. Rev. B 65, 134402 (2002).
    [29] Manfred Fiebig, “Revival of the magnetoelectric effect” J. Phys. D: Appl. Phys. 38, R123 (2005).
    [30] V. J. Folen, G. T. Rado, and E. W. Stalder, " Anisotropy of the magnetoelectric effect in Cr2O3" Phys.Rev. Lett. 6, 607 (1961).
    [31] G. T. Rado, V. J. Folen, " Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains" Phys.Rev. Lett. 7, 310 (1961).
    [32] Dzyaloshinskii, I. E. (1960). "ON THE MAGNETO-ELECTRICAL EFFECT IN ANTIFERROMAGNETS." Soviet Physics Jetp-Ussr 10(3): 628-629.
    [33] J. Van den Boomgaard, D. R. Terrell, and R. A. J. Born, J. Mater. Sci. 9, 1705 (1974).
    [34] J. Van den Boomgaard, A. M. J. G. van Run, and J. van Suchtelen, Ferroelectrics 14, 727 (1976).
    [35] Boomgaard, J. and R. A. J. Born (1978). "A sintered magnetoelectric composite material BaTiO3-Ni(Co, Mn)2O4." Journal of Materials Science 13(7): 1538-1548.
    [36] G. Liu, C. W. Nan, N. Cai, and Yuanhua Lin, “Dependence of giant magnetoelectric effect on interfacial bonding for multiferroic laminated composites of rare-earth-iron alloys and lead–zirconate–titanate” J. Appl. Phys, 95, 2660 (2004).
    [37] Ryu, J., S. Priya, et al. (2001). "Effect of the Magnetostrictive Layer on Magnetoelectric Properties in Lead Zirconate Titanate/Terfenol-D Laminate Composites." Journal of the American Ceramic Society 84(12): 2905-2908.
    [38] J. Ryu, A. V. Carazo, K. Uchino, and H. E. Kim, “Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites” Jpn. J. Appl. Phys., Part 1 40, 4948 (2001).
    [39]S. Dong, J. Cheng, J. F. Li, and D. Viehland, “Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr, Ti)O3 under resonant drive” Appl. Phys. Lett. 83, 4812 (2003).
    [40]S. Dong, J. Cheng, J. F. Li, and D. Viehland, “A strong magnetoelectric voltage gain effect in magnetostrictive-piezoelectric composite” Appl. Phys. Lett. 85, 3534 (2004).
    [41] N.A. Hill, J. Phys. Chem. B 104 (2000) 6694.
    [42] N.A. Hill, A. Filippetti, “Why are there any magnetic ferroelectrics?” J. Magn. Magn. Mater. 242–245 (2002) 976.
    [43] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D.Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “ Epitaxial BiFeO3 multiferroic thin film heterostructures ” Science 299, 1719 (2003).
    [44] Venevtsev Y N, Gagulin V V and Zhitomirsky I D Ferroelectrics 73 221 (1987).
    [45] G.A. Smolenskii, V.A. Bokov, V.A. Isupov, N.N. Krainik and G.H. Nedlin Helv. Phys. Acta 41 (1968), p. 1187.
    [46] Venevtsev, Y. N. and V. V. Gagulin (1994). "Search, design and investigation of seignettomagnetic oxides." Ferroelectrics 162(1): 23-31.
    [47] Skinner, S. (1970). "Magnetically Ordered Ferroelectric Materials." Parts, Materials and Packaging, IEEE Transactions on 6(2): 68-90.
    [48] Schmid H Int. J. Magn. 4 337 (1973).
    [49] Aizu, K., ecirc, et al. (1970). "Possible Species of Ferromagnetic, Ferroelectric, and Ferroelastic Crystals." Physical Review B 2(3): 754.
    [50] Schmid H Ferroelectrics 162 317 (1994).
    [51] Smolenskii G A and Chupis I E Sov. Phys.—Usp. 25 475 (1982)
    [52] Kubel F and Schmid H Acta Crystallogr. B 46 698 (1990).
    [53] Coeur´e P, Guinet F, Peuzin J C, Buisson G and Bertaut E F Proc. International Meeting on Ferroelectricity (Prague, 1966) (Prague: Institute of Physics of the Czechoslovak Academy of Sciences) (1966).
    [54] Venevtsev Y N, Gagulin V V and Zhitomirsky I D Ferroelectrics 73 221 (1987).
    [55] Ascher E, Schmid H and Tar D Solid State Commun. 2 45 (1964).
    [56] Schmid, H. (1965). "Die synthese von boraziten mit hilfe chemischer transportreaktionen." Journal of Physics and Chemistry of Solids 26(6): 973-976.
    [57] B.I. Al’shin, D.N. Astrov, R.V. Zorin, Zh. Eksp. Teor. Fiz. 63 (1972) 2198.
    [58] E. Ascher, H. Rieder, H. Schmid, H. Stoessel, J. Appl. Phys. 37 (1966) 1404.
    [59] Schmid, H., Rieder, H., Ascher, E.: Solid State Commun. 3 (1965) 327.
    [60] J. J. Ebelmen, Ann., 57, 331 (1846).
    [61] Chen, B., M. Li, et al. (2011). "Effect of top electrodes on photovoltaic properties of polycrystalline BiFeO3 based thin film capacitors." Nanotechnology 22(19).
    [62] D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J.F. arucco, S. Fusil, Phys. Rev. B 76,024116 (2007).
    [63] 劉純宇,”BiFeO3鐵電薄膜之製備與特性研究”,成功大學材料科學與工程學系碩士論文.
    [64] G. Catalan and J. F. Scott, Adv. Mater. 21, 2463 (2009).
    [65] I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C 15, 4835 (1982).
    [66] Chu, Y.H. et al., Mater. Today. (2007) 10,16.
    [67] C. Ederer and N. A. Spaldin, Phys. Rev. B 71, 060401 (2005).
    [68] M.I.Morozov,N.A.Lomanova,andV.V.Gusarov, "Specific features of BiFeO3 formation in a mixtire of Bismuth and Iron oxides" , Russian Journal of General Chemistry,73(11),1676-1680,(2003).
    [69] Fischer, R. B. and J. P. Ellinger (1953). "A Replica Technique in the Study of Chemical Precipitation Processes." Journal of Applied Physics 24(8): 1051-1053.
    [70] J. R. Teague, R. Gerson, and W. J. James, "Dielectric hystersis in single crystal BiFeO3" Solid State Commun. 8, 1073 (1970).
    [71] A.Z.Simoes and A.H.M Gonzalez ,"Ferroelectric characteristics of BiFeO3 thin flims prepared via a sample chemical solution deposition" J.Appl,phys 101,074108(2007).
    [72] J. G. Wu, G. Q. Kang, and J. Wang. Appl. Phys. Lett. 95, 192901 (2009).
    [73] D. Lee, M. G. Kim, S. Ryu, and H. M. Jang, “Epitaxially grown La-modified BiFeO3 magnetoferroelectric thin films”, Appl. Phys. Lett. 86 222903(2005).
    [74] K.Y.Yun,M.Noda,and M.Okuyama, "Prominent ferroelectricity of BiFeO3 thin flims prepared by pulsed-laser-deposition", Appl.Phys.Lett. 83,3981,(2003).
    [75] R.Ueno,S.Okaura,H.Funakubo and K.Saito, "Crystal structure and electric properties of epitaxial BiFeO3 thin flims grown by metal organic chemical vapor deposition" . J.Appl.Phys. 44(39) , L1231-L1233, (2005).
    [76] Y.H.Lee, J.M.Wu, Y.C.Chen, Y.H.Lu, and H.N.Lin "Surface chemistry and nanoscale characterizations of multiferroic BiFeO3 thin flims", Electrochemical and Solid-State letters, 8(10), F43-F47, (2005)
    [77] Wang, Y., Z. Li, "Magnetic-electric behaviors in BiFeO3 films grown on LaNiO3-buffered Si substrate." Journal of Applied Physics 106(7): 073917-073917. (2009).
    [78]Zheng, R. Y., X. S. Gao, "Multiferroic BiFeO3 thin films deposited on SrRuO3 buffer layer by rf sputtering." Journal of Applied Physics 101(5): 054104-054105. (2007).
    [79] Ranjith, R., B. Kundys, "Periodicity dependence of the ferroelectric properties in BiFeO3/SrTiO3 multiferroic superlattices." Applied Physics Letters 91(22): 222904-222903(2007).
    [80] Sakamoto W, Yamazaki H, Iwata A, Shimura T, Yogo T (2006) Jpn J Appl Phys Part 1 45:7315.
    [81] X. Qi, Joonghoe Dho, Rumen Tomov, Mark G. Blamire, and Judith L. MacManus-Driscoll, "Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3" Appl. Phys. Lett. 86, 062903 (2005).
    [82] Wu, J., G. Kang, "Ferromagnetic, ferroelectric, and fatigue behavior of (111)-oriented BiFeO3/(Bi1/2Na 1/2)TiO3 lead-free bilayered thin films." Applied Physics Letters 94(17): 172906-172903. (2009).
    [83] Wu, J. and J. Wang "Multiferroic behavior and impedance spectroscopy of bilayered BiFeO3/CoFe2O4thin films." Journal of Applied Physics 105(12): 124107-124106. (2009).
    [84] Nechache, R., P. Gupta, "Enhanced magnetism in epitaxial BiFeO3/BiCrO3 multiferroic heterostructures." Applied Physics Letters 91(22): 222908-222903.(2007).
    [85] Cheng, Z., X. Wang, "Enhanced electrical polarization and ferromagnetic moment in a multiferroic BiFeO3/Bi 3.25Sm 0.75Ti 2.98V 0.02O 12 double-layered thin film." Applied Physics Letters 88(13): 132909-132903. (2006).
    [86] Huang, F., X. Lu, "Multiferroic properties and dielectric relaxation of BiFeO3/Bi3.25La0.75Ti3O12 double-layered thin films." Applied Physics Letters 90(25): 252903-252903. (2007).
    [87] Li, Y. W., J. L. Sun, "Structural, ferroelectric, dielectric, and magnetic properties of BiFeO3/Pb(Zr0.5,Ti0.5)O3 multilayer films derived by chemical solution deposition." Applied Physics Letters 87(18): 182902-182903. (2005).
    [88] Murari, N. M., A. Kumar, "Reduced leakage current in chemical solution deposited multiferroic BiFeO 3/Ba 0.25Sr 0.75TiO3 heterostructured thin films on platinized silicon substrates." Applied Physics Letters 92(13): 132904-132903. (2008).
    [89] Wu, J., G. Kang, "Electrical behavior and oxygen vacancies in BiFeO3/[(Bi1/2Na1/2)0.94Ba0.06]TiO3 thin film." Applied Physics Letters 95(19): 192901-192903. (2009).
    [90] H. Uchida, R. Ueno, H. Nakaki, H. Funakubo and S. Koda, Jpn. J. Appl. Phys. 44 (2005), p. 561.
    [91] R.K. Mishra, D.K. Pradhan, R.N.P. Choudhary and A. Banerjee, J Phys Condens Matter 20 (2008), pp. 045218–045223.
    [92]Bellakki, M. and V. Manivannan "Citrate-gel synthesis and characterization of yttrium-doped multiferroic BiFeO3." Journal of Sol-Gel Science and Technology 53(2): 184-192. (2010).
    [93] D. Damjanovic and M. Demartin, J. Phys. D: Appl. Phys. 29 (1996), pp. 2057–2060.
    [94] V. A. Khomchenko, J. A. Paixão, V. V. Shvartsman, P. Borisov, W. Kleemann, D. V. Karpinsky, and A. L. Kholkin, Scripta Mater. 62, 238 (2010).
    [95] D. Kan, L. Pálová, V. Anbusathaiah, C.J. Cheng, S. Fujino, V. Nagarajan, K.M. Rabe and I. Takeuchi, Adv. Funct. Mater. 20 (2010), p. 1108.
    [96] Wang X Z, Liu H R and Yan B W 2008 J. Sol-Gel Sci. Technol. 47 124.
    [97] H.R. Liu, X.Z. Wang, Solid State Commun. 148 (2008) 203–205.
    [98]Liu, J., M. Li, "Structural and multiferroic properties of the Ce-doped BiFeO3 thin films." Journal of Alloys and Compounds 493(1-2): 544-548.(2010).
    [99] Quan, Z., W. Liu, "Microstructure, electrical and magnetic properties of Ce-doped BiFeO3 thin films." Journal of Applied Physics 104(8): 084106-084110. (2008).
    [100] Liu, J., M. Y. Li, "Effect of Ce doping on the microstructure and electrical properties of BiFeO3 thin films prepared by chemical solution deposition." Journal of Physics D-Applied Physics 42(11). (2009).
    [101] Liu, J., M. Y. Li, et al. (2011). "Effects of ion-doping at different sites on multiferroic properties of BiFeO3 thin films." Applied Physics a-Materials Science & Processing 102(3): 713-717.
    [102] 陳三元,"強介電薄膜之液相化學法製作",工業材料 108,100-111 (1995).
    [103] Robert W. Schwartz, "Chemical solution deposition of perovskite thin films," Chemistry of Materials 9 (11), 2325 (1997).
    [104] H. J. Nam, H. H. Kim, and W. J. Lee, Jpn.J. Appl. Phps. Part 1, 37, 3462 (1998).
    [105] H.J. Nam, D.K. Choi and W.J. Lee, Thin Solid Films 371 (2000), pp. 264–271.
    [106] TANG Ming-hua, et al, Trans. Nonferrous Met. Soc. China , s742,17(2007).
    [107] Brinkman, K. S., H. Takamura, et al. (2010). "The Oxygen Permeation Properties of Nanocrystalline CeO2 Thin Films." Journal of the Electrochemical Society 157(12): B1852-B1857.
    [108] A. Huang and S.R. Shannigrahi, J. Alloys Compd. 509 (2011), pp. 2054–2059.
    [109] J. A. Kerr and D. W. Stocker, in Handbook of Chemistry and Physics, 83rd ed., D.R. Lide, Editor, p. 9, CRC Press LLC, Boca Raton, FL (2002).
    [110] Z. Quan, H. Hu, S. Xu, W. Liu, G. Fang, M. Li, X. Zhao, “Surface chemical bonding states and ferroelectricity of Ce-doped BiFeO3 thin films prepared by sol–gel process, J Sol-Gel Sci Technol 48, 261 (2008).
    [111] Lampert, M. A. "Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps." Physical Review 103(6): 1648. (1956).
    [112] C. C. Lee and J. M. Wu, "Studies on Leakage Mechanisms and Electric Properties of Doped-BiFeO3 Films" , Electrochem. Solid State Lett. 10, (2007) G58.
    [113] C . F. Chung, and J. M. Wu, "“Low leakage BiFeO3 thin films fabricated by chemical solution deposition” Electrochem. Solid State Lett. 8 (2005) F63-66.
    [114] Y. Wang, Q. H. Jiang, H. C. He, and C. W. Nan, Appl. Phys. Lett. 88,142503 (2006).
    [115] Byung-Eun Park,Ikuo Sakai,Eisuke Tokumitsu ,Hiroshi Ishiwara ,” Hysteresis characteristics of vacuum-evaporated ferroelectric PbZr0.4Ti0.6O3 films on Si(111) substrates using CeO2 buffer layers, Applied Surface Science 117/118(1997)423-428.
    [116] Wang, J., A. Scholl, et al. (2005). "Response to Comment on "Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures"." Science 307(5713): 1203.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE