簡易檢索 / 詳目顯示

研究生: 劉晏綸
Yen-Lun Liu
論文名稱: 超微奈米鑽石薄膜製作平面場發射元件與其電子場發射特性
Fabrication and field emission properties of the ultra nano diamond lateral emitter
指導教授: 黃金花
Jin-Hua Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 89
中文關鍵詞: 場發射奈米鑽石超音波震盪成核
外文關鍵詞: field emission, nano diamond, ultrasonic nulceation
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文研究中,我們以微波電漿輔助化學汽相沉積法,成長超微晶奈米鑽石薄膜並製作超微晶奈米鑽石平面場發射元件。我們使用不同的粉末組成來超音波震盪成核,並探討其鑽石薄膜成長機制與電子場發射特性。我們在實驗中發現,適當比例混合的奈米鑽石粉末、鈦金屬粉末,可以提升鑽石薄膜的均勻度,並且得到很小的薄膜厚度,而其電子場發射特性也較佳。
    在超微晶奈米鑽石平面場發射元件的製作上,我們首先利用犧牲層結構來形成,並討論不同幾何結構對元件場發射特性的影響。我們使元件達到一個很小的電極間距(gap ~1 □m),希望得到很低的起始電壓,並藉由增加陰極尖端的數量和降低陰極之間的間距,來提昇電流大小和電流密度。
    我們也選用氧電漿蝕刻與選區成長等製程來製作超微晶奈米鑽石平面場發射元件,並探討這三種不同製程對元件的電子場發射特性之影響。希望得到一個簡單有效的製程,並且具有相同優良的電子場發射特性。


    Ultra Nano Crystalline Diamond (UNCD) films and lateral emitters comprising UNCD were grown by using microwave plasma-enhanced chemical vapor deposition (MPCVD). We have investigated and discussed about how to improve the nucleation of UNCD films as well as the field emission properties of UNCD films and lateral emitters made by UNCD. Experiments were carried out with different powder composition to enhance ultrasonication nucleation and also studied the effects on the electric filed emission properties. We have found that the Ti and NCD mixed powder in methanol solution enhanced the morphology of the UNCD film with very small thickness (<200 nm) and its field emission property was also better than the other nucleation methods.
    To fabricate the UNCD lateral emitter, we have used sacrificial layer process and investigated the effect of geometric changes on the field emission properties. Lateral emitter with very small gap between the electrodes was fabricated (< 2 □m) with markedly reduced turn-on voltage. The increase in the number of tips and reduce in the cathode to cathode distance were also made in practice to increase the current density.
    Finally, we have used three different fabrication processes to fabricate the lateral emitter and studied its effect on the field emission properties. Efforts have been made to find an easy and convenient process to fabricate the UNCD lateral emitter with the field emission properties as best as possible.

    摘要......................................................I 目錄....................................................III 第一章 序論 I. 簡介...................................................1 II. 研究動機..............................................5 III.論文範疇..............................................5 第二章 文獻回顧 I. 鑽石薄膜的特性與應用 I.1 鑽石的基本材料性質...............................7 I.2 鑽石薄膜的應用..................................14 II. 鑽石薄膜的成核理論與合成方法 II.1 鑽石薄膜成核理論...............................17 II.2 鑽石薄膜的合成方法.............................19 III. 電子場發射理論 III.1 金屬材料電子場發射的理論......................27 III.2 半導體材料電子場發射的理論....................30 III.3 鑽石薄膜的電子場發射特性......................34 III.4 鑽石的負電子親和力............................36 第三章 研究方法與實驗流程 I. 研究方法--鑽石薄膜的部分區域成長與蝕刻 I.1 鑽石薄膜的選區成長..............................40 I.2 鑽石薄膜之蝕刻製程..............................43 I.3 利用犧牲層結構區域成長鑽石薄膜..................45 II. 實驗流程 II.1 樣品的製作..........................................47 II.1-1 鑽石薄膜的合成..............................47 II.1-2 實驗步驟....................................48 II.1-3 MPECVD 鍍膜參數.............................48 II.2 鑽石薄膜的分析..................................... 49 II.2-1 場發射掃描電子顯微鏡分析....................49 II.2-2 拉曼及拉曼線掃瞄分析........................49 II.2-3 四點探針表面電性分析........................52 II.2-4 電子場發射電性分析..........................52 II.3 鑽石薄膜元件的製作..................................53 II.3-1 SOI基板做犧牲層製作鑽石薄膜元件.............53 II.3-2 氧電漿蝕刻製作鑽石薄膜元件..................55 II.3-3 選區成長製作鑽石薄膜元件....................56 第四章 研究結果與討論 I. 不同粉末組成對超音波震盪輔助成核成長超微奈米鑽石薄膜之討論 I.1 超音波震盪輔助成核與鑽石薄膜成長之實驗步驟.....57 I.2 研究結果與討論.................................58 I.2-1 不同成核條件所成長的鑽石膜表面形貌與厚度.58 I.2-2 微晶奈米鑽石薄膜的Raman光譜特性.........61 I.2-3 不同成核方式之薄膜其場發射電性之比較.....63 I.3 綜合討論.......................................64 II. 超微奈米鑽石薄膜平面場發射元件的製作與其幾何結構變化對電子場發射特性之比較 II.1 實驗步驟......................................64 II.2 研究結果與討論................................67 II.2-1 陰極與陽極的間距大小變化對場發射電性的影響.............................................67 II.2-2 陰極尖端的數量變化對場發射電性的影響....71 II.2-3 陰極尖端之間距改變對場發射電性的影響....73 II.3 綜合討論......................................76 III. 不同製程對鑽石薄膜平面場發射元件的電子場發射特性變化之比較 III.1 實驗步驟.....................................76 III.1-1 氧電漿蝕刻鑽石薄膜之製程...........77 III.1-2 選區成長製作鑽石薄膜之製程.........78 III.2 研究結果與討論...............................79 III.3 綜合討論.....................................83 第五章 總結與未來展望....................................84 參考文獻.................................................85 圖目錄 1-1 鑽石的各種應用........................................3 2-1 鑽石和石墨的結晶構造..................................8 2-2 碳的平衡相圖..........................................9 2-3 鑽石的熱傳導係數.....................................11 2-4 鑽石的早期成長方式...................................19 2-5 與基材不反應者之鑽石孕核成長機制.....................21 2-6 與基板形成碳化物者之鑽石孕核成長機制.................22 2-7 微波電漿CVD設備圖...................................23 2-8 熱燈絲CVD設備圖.....................................24 2-9 高週波電漿放電系統設備圖.............................25 2-10 電子迴旋共振(ECR)設備圖.............................26 2-11 金屬-真空能帶示意圖(a)未加電場 (b)外加高電場........30 2-12 半導體能帶圖........................................32 2-13 不考慮電場穿透的半導體場發射示意圖..................33 2-14 考慮電場穿透下n型半導體的場發射示意圖..............34 2-15 有表面態的n型半導體................................35 2-16 Mo尖端的薄膜場發射陰極..............................36 2-17 典型的半導體能帶圖..................................38 2-18 鑽石(100)表面之鍵結圖...............................39 2-19 鑽石(111)表面之鍵結圖...............................40 3-1 R. Ramesham等人進行選區成長之流程圖..................43 3-2 氣體流量與微波能量對氧電漿蝕刻鑽石薄膜的影響.........44 3-3 利用氧電漿蝕刻製作鑽石薄膜平面場發射元件.............45 3-4 利用犧牲層結構鑽石薄膜製作平面場發射元件.............46 3-5 IPLAS 微波電漿鍍膜系統...............................47 3-6 拉曼光譜量測系統示意圖...............................50 3-7 成長於矽基板之鑽石薄膜拉曼線掃瞄分析結果.............51 3-8 鑽石平面場發射元件量測示意圖.........................53 3-9 平面場發射元件之光罩圖紋設計.........................54 3-10 SOI基板做犧牲層製作鑽石薄膜元件流程圖...............54 3-11 氧電漿蝕刻製作鑽石薄膜元件流程圖....................55 3-12 選區成長製作鑽石薄膜元件流程圖......................56 4-1 鑽石粉末震盪成核長成奈米鑽石薄膜的SEM圖.............59 4-2 碳沉積輔助鑽石粉末震盪成核長成奈米鑽石薄膜的SEM圖...60 4-3 鈦與鑽石混合粉末震盪成核長成奈米鑽石薄膜的SEM圖.....60 4-4 碳沉積輔助鈦與鑽石混合粉末震盪成核長成奈米鑽石薄膜的SEM圖...................................................60 4-5 比較偏壓輔助成核成長與混合粉末震盪成核成長的奈米鑽石薄膜的SEM圖...........................................61 4-6 不同成核方式所成長的鑽石薄膜之拉曼光譜比較...........62 4-7 不同成核方式所成長的鑽石薄膜之場發射電性比較.........63 4-8 以光阻定義SOI蝕刻區域的OM圖........................67 4-9 經BOE蝕刻氧化矽層後之鑽石薄膜成長區域...............67 4-10 鑽石薄膜長成於SOI基板的矽層上並經蝕刻形成懸空結構之平面場發射元件的SEM圖................................68 4-11 鑽石薄膜長成於SOI基板的矽層上(左)元件尖端部份的高倍SEM,(右)元件之側視SEM圖............................68 4-12 不同電極間距的鑽石薄膜平面場發射元件的SEM...........69 4-13 不同電極間距元件之電子場發射特性圖..................70 4-14 不同陰極尖端數量的鑽石薄膜平面場發射元件的]SEM......71 4-15 不同陰極尖端數量元件之電子場發射特性................72 4-16 不同陰極尖端之間距的平面場發射元件的SEM.............74 4-17 不同陰極尖端之間距的電子場發射特性圖................75 4-18 在鑽石薄膜上定義鋁膜罩幕之微影製程..................78 4-19 氧蝕刻製程所製作之鑽石平面場發射元件................78 4-20 以光阻定義鑽石薄膜選區成長區域......................79 4-21 選區成長製程製作之鑽石平面場發射元件................79 4-22 不同製程製的之鑽石平面場發射元件之電子場發射特性圖..81 4-23 鑽石薄膜成長在矽與二氧化矽上之拉曼光譜比較..........82 表目錄 1-1 鑽石的各種性質........................................2 2-1 四種型態天然鑽石之各項性質表..........................7 2-2 鑽石與其他材料的硬度比較..............................9 2-3 鑽石之耐熱衝擊指數比較................................9 2-4 天然鑽石、鑽石膜及類鑽石膜之性質比較..................12 2-5 鑽石與其他常見半導體之特性比較.......................14 3-1 碳結構的各種拉曼特性峰值.............................50 4-1 不同電極間距元件之電子場發射特性.....................70 4-2 不同陰極尖端數量元件之電子場發射特性.................73 4-3 不同陰極尖端之間距的電子場發射特性...................76 4-4 不同製程製作的鑽石平面場發射元件之電子場發射特性.....82

    [1] J. E. Field, The Properties of Diamonds (Academic, London, 1979).
    [2] Y. Tzeng, M. Yoshikawa, M. Murakawa and Feldman, “The Applications of Diamond Films and Related Materials”, eds, Elsevier, New York, (1991), (ADC).
    [3] Z. H. Huang, P. H. Cutler, N. M. Miskovsky, and T. E. Sullivan, “Caluation of electron field emission from diamond surface”,Revue “Le Vide, Les Couches Minces”-Supplement au No 271-Mars-Avril, pp92 (1994)
    [4] C. Wang, A. Garcia, D. C. Ingram, M. Lake, and M. E. Kordesch, “Cold Field-Emission from CVD Diamond Films Observed in Emission Electron-Microscopy”, Electronics Lett., 27, pp1459 (1991).
    [5] N. S. Xu, R. V. Latham, and Y. Tzeng, “Field-Dependence of the Area-Density of Cold Electron-Emission Sites on Broad-Area CVD Diamond Films”, Electronics Lett., 29, pp1596 (1993).
    [6] A. Modinos, Field, Thermionic, and Secondary electron Emission Spectroscopy, (Plenum, 1984, New York).
    [7] A. L. Lavoisier, Memoire Academie des Science, p. 564 (1882)
    [8] P. W. Bridgman, "Synthetic diamonds", Scient. Am., 193, pp42 (1955).
    [9] W. G. Eversole, U.S. Patent No. 3,030,188, (1962).
    [10] J. C. Angus, H. A. Will and W. S. Stanko, J. Appl. Phys., 39, pp2915 (1968).
    [11] B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, "Vapor growth of diamond on diamond and other surfaces", J. Cryst. Growth, 52, pp219 (1981).
    [12] J.L.Davidson, et. al., “Synthetic Diamond Micromechanical Membranes, Cantilever Beams, and Bridges” J. Electrochem. Soc., 137 (10), pp3206-3210 (Oct. 1990).
    [13] C.D. Ellis et. al., “Polycrystalline Diamond Film Flow Sensor” IEEE, pp132-134 (1990).
    [14] T. Roppel, et. al., “Thin film diamond microstructure applications”, Materials Science Monographs, 73 - Applications of Diamond Films and Related Materials, ADC ‘91, Auburn, Alabama, U.S.A. Aug 17-22, pp311-318(1991).
    [15] M. Aslam, et. al, “CVD Diamond Piezoresistive Sensors”, The 7th International Conference on Solid-State Sensors and Actuators, 718-721 (1993).
    [16] D.R.Wur, et. al., “Fabrication and Characterization of Ooped Polycrystalline Diamond Film (PDF) for strain Sensing Applications” The 7th International Conference on Solid-State Sensors and Actuators, pp722-725 (1993).
    [17] M. Frenklach, W. Howard, D. Hung, J. Yuan, K. E. Spear, and R. Koba, "Induced nucleation of diamond powder", Appl. Phys. Lett., 59(5), p.546(1991).
    [18] R. A. Bauer, N. M. Sbrockey, and W. E. Brower, Jr., “Quantitative nucleation and growth studies of PACVD diamond film formation on (100) silicon”, J. Mater. Res., 8, 2858(1993).
    [19] J. E. Green, S. A. Barnett, J. E. Sundgren and A. Rockett, Plasma-Surface Interactions and Processing of Materials, 281-311(1990).
    [20] X. Jiang, C. P. Klages, R. Zachai, M. Hartweg, and H. J. Fusser, "Epitaxial diamond thin films on (001) silicon substrate", Appl. Phys. Lett., 62, 3438(1993).
    [21] S. Iijima, Y. Aikawa, and K. Baba, "Early formation of chemical vapor-deposition daimond films", Appl. Phys. Lett., 57(25), p.2646(1990).
    [22] Jung Ho Je, G. Y. Lee, "Microstructures of diamond films deposited on (100) silicon wafer by microwave plasma-enhanced chemical vapour deposition", J. Mater. Sci., 27, p.6324(1993).
    [23] T. P. Ong, F. L. Xiong, and R. P. H. Chang, ”A mechanism of diamond nucleation and growth on single crystal copper”, paper # M8.2, MRS Spring meeting, San Franciso, April, 1992.
    [24] S. M. Pimenov, A. A. Smolin, V. G. Ralchenko, V. I. Konov, S. V. Likhanski and I. A. Veselovski, “UV Laser Processing of Diamond Films - Effects of Irradiation Conditions on the Properties of Laser-Treated Diamond Film Surfaces”, Diamond Relat. Mater., 2, 291(1993).
    [25] S. Yugo, T. Kimura, H. Kanai, Int. Conf. Diamond Science and Technology, (JNDF Tokyo) Oktt. 24-26, 1988, Tokyo, Japan.
    [26] W. G. Moffatt: “Binary Phase Diagrams Handbook”, Vol. 1-3, Genium Publishing Corporation, New York, 1984.
    [27] H. Holleck: Fischemeister/Jehn; “Hartstoffschichten zur Verschlei Bminderung”, pp.25-45, Verlag DGM, Oberursel BRD, 1987.
    [28] M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, “Diamond Synthesis from Gas-Phase in Microwave Plasma”, J. of Crystal Growth, 62, pp642 (1983).
    [29] A. Sawabe and T. Inuzuka, “Growth of Diamond Thin-Films by Electron Assisted Chemical Vapor-Deposition”, Appl. Phys. Lett., 46, pp146 (1985).
    [30] S. Matsumoto, “Chemical Vapor-Deposition of Diamond in RF Glow-Discharge”, J. Mater. Sci. Lett., 4, pp600 (1985).
    [31] J. Suzuki, Jpn. J. Appl. Phys., 28(2) L281 (1989).
    [32] A. Modinos, Field thermionic and secondary electron emission specroscopy, Plenum Press, New York, pp1~18 (1984).
    [33] D. A. Kirkpatrick, A. Mankofsky, and K. T. Tsang, Appl. Phys. Lett. 60, pp2065 (1992).
    [34] Robert Gomer, Field emission and field ionization, American Institute of Physics, pp21~29 (1993).
    [35] A. Vander Ziel, Solid State Physical Electronics (Prentice-Hall, Englewood Cliffs, 1968), pp144.
    [36] D. A. Buck and K. R. Shoulders, “An approach to microminiature systems”, in Proc. Eastern Joint Computer Conf., pp55-59 (AIEE, New York (1958).
    [37] C. A. Spindt, I. Brodie, L. Humphrey and E. R. Westerberg, “Physical properties of thin field emission cathode with molybdenum cones”, J. Appl. Phys. 47, pp5248-5263 (1976).
    [38] W. B. Choi, J. J. Cuomo, V. V. Zhirnov, A. F. Myers and J. J. Hren, “ Field emission from silicon and molybdenum tips coated with diamond powder by dielectrophoresis”, Appl. Phys. Lett., 68, pp720 (1996).
    [39] R. V. Latham and N. S. Xu, “Electron Pinholes - The Limiting Defect for Insulating High Voltages by Vacuum, a Basis for New Cold-Cathode Electron Sources”, Vacuum, 42, pp1173 (1991).
    [40] Z. H. Huang, P. H. Culter, N. M. Miskovsky, and T. E. Sullivan, “Theoretical-Study of Field-Emission from Diamond”, Appl. Phys. Lett., 65, pp2562 (1994).
    [41] V. V. Zhirnov, E. I. Givargizov, and P. S. Plekhanov, “Field-Emission from Silicon Spikes with Diamond Coatings”, J. Vac, Sci. Technol, B 13, pp418 (1995).
    [42] M. W. Geis, N. N. Efremow, J. D. Woodhouse, M. D. Mcaleese, M. Marchywka, D. G. Socker and J. F. Hochedez, “Diamond Cold-Cathode”, IEEE Electr. Dev. Lett., 12(8), pp456 (1991).
    [43] S. Iannazzo, “Review: A Survery of the Present Status of Vacuum Microelectonics”, Solid-State electronics, 36(3), pp301 (1993).
    [44] J. van der weide and R. J. Nemanich, “ Angle-resolved photoemission of diamond (111) and (100) surface: negative electron affinity and band measurements”, J. Vac. Sci. Technol., B 12(4), pp2475 (1994).
    [45] B. B. Pate, et. al., “Formation of surface states on the (111) surface of diamond”, J. Vac. Sci. Technol., 19(3), pp349 (1981).
    [46] Jing Sheng Ma, et. al., “Selective nucleation and growth of diamond particles by plasma-assisted chemical vapor deposition”, Appl. phys, Lett., 55 (11), pp1071-1073 (11 Sept. 1989).
    [47] R. Ramesham et. al., “Selective growth of polycrystalline diamond thin films on a variety of substrates using selective damaging by ultrasonic agitation”, J. Mater. Res., l7(5), pp1144-1151 (May 1992).
    [48] R. Ramesham, et. al., “Selective growth of diamond crystals on the apex of silicon pyramids”, J. Mater. Res., 7(5), pp1189-1194 (May 1992).
    [49] R. Ramesham, et. al., “Characterization of polycrystalline diamond thin films grown on various substrates”, Thin Solid Films, 212, pp96-103 (1992).
    [50] R. Ramesham, et. al., “Selective growth, characterization , and microstructure fabrication of undoped and doped polycrystalline diamond thin films”, Material Science Monographs 73- Applications of Diamond Films and Related Materials, ADC‘91, Auburn, Alabama, U.S.A., Aug. 17-22, pp411-416(1991).
    [51] J.L. Davidson, et. al., “Selective Deposition of Diamond Films”, J. of Electronic Materials, 18(6), 711-715 (1989).
    [52] Jing-Sheng. Ma, et. al., “Interfacial structures and selective growth of diamond particles formed by plasma-assisted CVD”, Applied Surface Science, 41/42, pp572-579 (1989).
    [53] Jing-Sheng Ma, et. al., “Nucleation control and selective growth of diamond particles formed with plasma CVD”, J. of Crystal Growth, 99, pp1206-1210 (1990).
    [54] Jing Sheng Ma, et. al., “Selective nucleation of diamond particles by plasma-assisted chemical vapor deposition”, proceeding of the 1st Int. symp on Diamond and Diamond -like films, Electrochem. Soc. pp149-161, 1989.
    [55] K.Hirabayashi et. al., “Selective deposition of diamond crystals by chemical vapor deposition using a tungsten-filament method”, Appl. Phys. Lett., 53 (19), Nov., pp1815-1817 (1988).
    [56] Takayoshi Inoue, et. al., “Selected-Area deposition of diamond films”, J. Appl. Phys., 67 (12), pp7329-7336 (15 June 1990).
    [57] K. Kobashi, et. al., “Selected-area deposition of CVD diamond films”, proceedings of the lst Int. Symp. on Diamond and Diamond-like films, Electrochem. Soc., pp139-148(1989).
    [58] S.J. Lin, et. al., “Effects of local facet and latticed damage on nucleation of diamond grown by microwave plasma chemical vapor deposition”, Appl. phys. Lett., 60(13), pp1559-1561 (30 March 1992).
    [59] M. Aslam, et. al, “CVD Diamond Piezoresistive Sensors”, The 7th International Conference on Solid-State Sensors and Actuators, 718-721 (1993).
    [60] J. L. Valdes, et. al., “Selected Area Nucleation and Patterning of Diamond Thin Films by Electrophoretic Seeding”, J. Electrochem. Soc., 138(2), pp635-636 (Feb.1991).
    [61] J.L. Valdes, “Electrophoretic Deposition of Colloidal Diamond for Selective DVD Growth of Diamond Films, Material Science Monographs 73 - Applications of Diamond Films and Related Materials, ADC‘91, Auburn, Alabama, U.S.A. Aug. 17-22, pp423-428 (1991)”.
    [62] K. Higuchi et.al., “Selected area diamond deposition by control of the nucleation sites”, Diamond and Related Materials, 1, pp220-229 (1992).
    [63] Satoshi Katsumata, et. al., “New method for selective growth of diamonds by microwave plasma chemical deposition”, Diamond and Related Materials, 2, 1490-1492 (1993).
    [64] N. A. Fox, M. J. Youh, J. W. Steeds, and W. N. Wang, J. Appl. Phys. 87(11), 8187 (2000).
    [65] N.I. Ohapliev, et. al., “Laser-assisted selective area deposition of diamond films”, Material Science Monographs 73-Applications of Diamond Films and Related Materials, ADC‘91, Aubura Alabama, U.S.A. Aug. 17-22, pp417-421 (1991).
    [66] Shuji Kiyohara, et. Al., ” Nanopatterning od diamond film with composite oxide mask of metal octylates in electron beam lithography”, Nanotechnology 10 (1999) 385–388.
    [67] K. Subramanian , W.P. Kang, el. “Nano-diamond planar lateral field emission diode“ Diamond & Related Materials 14 (2005) 2099 – 2104
    [68] 彭國光著/劉國雄,林諭男指導 “Study on bias-enhanced nucleation and growth of diamond films by microwave plasma-enhanced chemical vapor deposition method”清華大學博士論文 (2002)
    [69] W.P. Kang, el. “Diamond and carbon-derived vacuum micro- and nano-electronic devices”Diamond & Related Materials 14 (2005) 685–691

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE