簡易檢索 / 詳目顯示

研究生: 黃志翰
Jyh-Hann Huang
論文名稱: 利用近場光學顯微術研究表面電漿偏極子於金奈米線陣列之傳遞現象
Study of Surface Plasmon Polariton Propagation on Gold Nanowire Arrays by Near-Field Scanning Optical Microscopy
指導教授: 林鶴南
Heh-Nan Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 84
中文關鍵詞: 表面電漿偏極子
外文關鍵詞: Suface plasmon polaritons
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前引起眾人興趣的表面電漿偏極子(surface plasmon polaritons, SPPs)是因電子集體振動而產生並具空間侷限性的電磁波,由於表面電漿偏極子的特殊性質,許多二維的元件可被廣泛應用於奈米光子學及生物感測器,如表面電漿反射鏡、分光器、光波導等。
    本研究使用利用近場光學顯微術,來觀察金圖案上的表面電漿偏極子激發與傳遞現象,在金圖案的製作上分成兩部分,金奈米線陣列是由原子力顯微術之機械力微影製作,其他圖案則是利用電子束微影來製作。利用TM偏極化綠光雷射,入射於稜鏡造成全反射來激發金圖案上的表面電漿偏極子,並使用近場光學顯微術來觀察其表面的光分布情形。
    當光源平均照射在5 μm寬20 μm長的金微米線上時,在金表面上觀察到明顯的表面電漿波干涉條紋,其波長量出來為480 nm,與理論計算之數值相當吻合(λsp = 471 nm),當雷射照射於金微米線的一端,在另一端發現表面電漿的傳遞現象及散射現象。對於金奈米線(寬130 nm, 長15 μm)陣列,雷射光分為兩種入射方式,當入射方向與陣列方向平行,雷射光照射於金奈米線陣列的一邊,在金奈米線陣列另一邊觀察到表面電漿波干涉條紋,波長量測出來為479 nm,再次與理論結果相吻合;當入射方向與陣列方向垂直,則觀察到在金奈米線兩旁的電磁場比在石英玻璃上的電磁場強度約增強了3.5倍。最後,當金線的表面電漿偏極子被激發時,施加電壓於金線兩旁,觀察到表面電漿波干涉條紋因電流通過而出現擾動現象。


    Surface plasmon polaritons (SPPs), which are spatially confined electromagnetic modes related to collective electron oscillations, are now attracting substantial interests. Due to the unique characteristics of SPP, two dimensional devices such as SP mirrors, SP beam splitters, SP waveguides, etc. can be found in a broad range of applications including nanophotonics and biological sensing.
    In this work, SPP excitation and propagation on gold patterns are studied by near-field optical scanning microscopy (NSOM). For constructing the gold patterns, AFM nanomachining is used to create nanowire arrays. On the other hand, e-beam lithography is used to define other patterns. The SPPs are excited by an attenuated total reflection (ATR) configuration with the use of a transverse magnetic polarized laser source (532 nm). The optical distributions on the gold patterns are studied by a commercial NSOM.
    By illuminating gold microstripes (5 μm in width and 20 μm in length) uniformly, the optical image shows the excitation of SPPs with an obvious interference pattern. The measured wavelength of 480 nm is in good agreement with the calculated wavelength of the surface plasmons (λsp = 471 nm). By illuminating one side of a gold microstripe, SPP propagation and scattering at the other side is observed. A gold nanowire (130 nm in width and 15 μm in length) array is illuminated by focusing a laser beam with two types of incident direction. With the incident direction parallel to the nanowire array, SPPs are excited on one side of the array and propagating to the other side. The measured wavelength of 479 nm is again in good agreement with the calculated wavelength. With the incident direction perpendicular to the nanowire array, the electromagnetic field enhancement on both sides of nanowires is 3.5 times larger than that on the quartz. Finally by applying a voltage between the two sides of a gold microstripe when SPPs are excited, the disturbance of the SPP interference pattern is observed when a current passes through the microstripe.

    CONTENTS Chapter 1 Introduction 1 1.1 Plasmonics 1 1.2Motivation 4 Chapter 2 Literature review 5 2.1 Surface plasmon polaritons 5 2.1.1 Surface plasmon polaritons at plane interface 6 2.1.2 Excitation of surface plasmon polaritons 11 A. Prism coupling: 12 B. Grating coupling 13 C. Other coupling methods 15 2.2 Surface plasmon devices 15 2.2.1 Surface plasmon waveguide 17 A. Stripe waveguide 17 B. Channel surface plasmon polaritons waveguide 18 C. Particle chains plasmon waveguide 19 2.2.2 Other surface plasmon device 20 A. SP mirror 20 B. SP beam splitter 21 C. SP launcher 22 D. SP lens 22 2.3 NSOM 24 2.3.1 The history of NSOM 24 2.3.2 Imaging formation of NSOM 27 2.3.3 Aperture NSOM 28 Chapter 3 Experimental Procedures and Instruments 30 3.1 Fabrication of gold patterns 30 3.1.1 Fabrication of Nanowire Array by AFM nanomachining. 30 3.1.2 Fabrication of gold patterns by E-beam lithography 32 3.1.3 Fabrication of gold strips with gold electrode at each side 33 3.2 Fabrication of NSOM probe 34 3.3 Demonstration of NSOM set-up 35 3.4 Experimental Instruments 38 3.4.1 Near-field scanning optical microscope 38 3.4.2 Atomic force microscope 39 3.4.3 Micropipette puller 39 3.4.4 Physical Vapor Deposition (PVD) 40 3.4.5 E-beam Evaporator 41 Chapter 4 Results and Discussion 42 4.1 Fabrication of Au coated NSOM fiber probes 42 4.2 Fabrication of Structures 43 4.2.1 Gold stripes 44 4.2.2 Gold stripes with gold electrodes at both side 46 4.2.3 Gold nanowire Arrays 47 4-3 Gold stripes 48 4.3.1 Near-field observation of SPPs propagation on gold stripes 49 4.3.2 SPPs excitation on single gold stripe 54 4.4 Gold nanowire array 60 4.5 Gold stripe: apply with voltage 67 Chapter 5 Conclusions 69 Reference 71 FIGURE CONTENTS Figure 1-1 Trends in transistor gate delay and interconnect delay with IC fabrication technology. [1] 1 Figure 1-2 Trend in the information-carrying capacity of a single line (wire or optical fiber) with time and technology. [1] 2 Figure 1-3 Operating speeds and critical dimensions of different chip-scale device technologies. [3] 3 Figure 2-1 SPP propagating on the metal-dielectric interface. [3]……………………5 Figure 2-2 Two semi-infinite media with dielectric function □and separated by a planar interface at . 6 Figure 2-3 SPP wavelength as a function of free space wavelength □0, for SPPs on the silver surface. [6] 10 Figure 2-4 SPP propagation length as a function of free space wavelength□□0, for SPPs on the gold and silver surface. [7] 10 Figure 2-5 Dispersion relation of surface plasmon.[51] 11 Figure 2-6 (a) Otto configuration. (b) Kretschmann configuration. 13 Figure 2-7 (a) Kretschmann configuration and (b) the wavevector excited by it.[51] 13 Figure 2-8 Grating coupling.[51] 14 Figure 2-9 Methods of exciting SPP (a) NSOM tip. (b) surface roughness. 15 Figure 2-10 A 50/50 metal stripe SPP mode spillter.[25] 21 Figure 2-11 Unidirectional propagation and focusing of SPP.[26] 22 Figure 2-12 Microscopy around the world today[32] 24 Figure 2-13 Model of (a) far-field and (b) near-field microscopes 28 Figure 2-14 Variety of aperture NSOM[49] 29 Figure 3-1 The fabrication process of gold nanowire array on quartz substrate by AFMnanomachining…..…………………………………………………31 Figure 3-2 The fabrication process of gold patterns on quartz substrate by e-beam lithography……………………………………………………………….33 Figure 3-3 shows the flowchart of process in fabricating NSOM fiber probe. 35 Figure 3-4 presents the detailed NSOM set-up and the light propagation path in NSOM……………………………………………………………………37 Figure 3-5 The shear force measuring head functional scheme 39 Figure 3-6 The sketch of a set-up for pulling of optical fibers. 40 Figure 3-7 The schematic diagram of Physical Vapor Deposition (PVD) 40 Figure 3-8 A diagram of e-beam evaporation system. 41 Figure 4-1 SEM image of gold coated fiber probe…………………………………..42 Figure 4-2 The operating resonance frequency at 190 kHz. 43 Figure 4-3 SEM image of gold stripes with (a) 0.4 □m and 0.5 □m (b) 2 □m in width. 45 Figure 4-4 Y – shaped gold stripe. 45 Figure 4-5 SEM image of gold stripes between two gold pads. 46 Figure 4-6 (a) SEM image of gold nanowire array. (b) Zoomed-in image of (a). 47 Figure 4-7 Schematic of laser incident 48 Figure 4-8 Schematic of laser incident 49 Figure 4-9 Optical image of the focus laser spot 49 Figure 4-10 (a) Laser spot is located between the gold film and gold stripes. (b)Experiment result by J. C. Weeber et al[13]………………………….51 Figure 4-11 Topography of 13 □m long gold stripe (a) and the corresponding optical image…………………………………………………………………….52 Figure 4-12 Cross-section profile of the Fig. 4-10(b) 52 Figure 4-13 Topography of 25 □m long gold stripe (a) and the corresponding optical image……..……………………………………………………………...53 Figure 4-14 Cross-section profile of the Fig. 4-13(b) 53 Figure 4-15 (a) Sketch of optical excitation. (b) Optical image of gold stripe. (c) Cross-section profile. 55 Figure 4-16 (a)Topography and (b)3-D image of Y – shaped gold stripe. 56 Figure 4-17 NSOM image of Y – shaped gold stripe 57 Figure 4-18 Cross – section profiles of Y – shaped gold stripe. 57 Figure 4-19 (a)Topography and (b)NSOM image of Y – shaped gold stripe. 58 Figure 4-20 Cross-section profiles of the branches of Y – shaped gold stripe. 58 Figure 4-21 NSOM image of gold stripes. 59 Figure 4-22 Schematic diagrams of optical excitation: incident direction (a) parallel (b) perpendicular to the nanowire array………………………………..60 Figure 4-23 (a)Topography and (b)NSOM image of gold nanowire array. 61 Figure 4-24 (a)Topography and (b)NSOM image of gold nanowire array. 62 Figure 4-25 (a)NSOM image and (b)cross-section profile of gold nanowire. 63 Figure 4-26 (a)Topography and (b)NSOM image of gold nanowire array. 64 Figure 4-27 The zoomed image of Fig. 4-26 (a)Topography, (b)NSOM image. 64 Figure 4-28 (a)Topography, (b)NSOM image and cross-section profile of gold nanowire array………………………………………………………….65 Figure 4-29 (a)Topography, (b)NSOM image and (c)cross-section profile of gold nanowire array………………………………………………………….66 Figure 4-30 Schematic diagrams of voltage applied and optical excitation. 67 Figure 4-31 NSOM image of gold stripe with no voltage applied. 68 Figure 4-32 NSOM images with current of (a) 1.09 □A and (b) 2.53 □A pass through. 68 TABLE CONTENTS Table 2-1 Suface plasmon waveguide 16 Table 2-2 SP devices 19 Table 2-3 History of NSOM 26 Table 3-1 The listed instruments in fabricating nanowire array……………………..30 Table 3-2 The listed instruments in fabricating nanowire array. 32 Table 3-3 The listed instruments in fabricating NSOM probe. 34 Table 3-4 The listed components of home-made NSOM set-up 35 Table 4-1 The three kind of structures for study of near-field optical distributions…44

    Reference

    1. R. Kirchain, and L. Kimerling, Nature Photonics, 1, 6 (2007).
    2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature, 424, 6950 (2003).
    3. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, Materials Today, 9, 7-8 (2006).
    4. H. Räther, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
    5. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P .M. Echenique, Rep. Prog. Phys., 70 (2007).
    6. W. L. Barnes, J. Opt. A. Pure Appl. Opt., 8, (2006).
    7. B. Lamprecht, J. R.Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F. R. Aussenegg, J. C. Weeber, Appl. Phys. Lett., 79, 1 (2001).
    8. E. Kretschmann, Z. Phys., 241, 313 (1971).
    9. A. Otto, Z. Phys., 216 (1968).
    10. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, Phys. Rev. Lett., 21, 22 (1968).
    11. G. W. Ford, W. H. Weber, Phys. Rep. 113, 195 (1984).
    12. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, Phys. Rev. Lett., 77, 9 (1996).
    13. J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, Phys. Rev. B,. 6404, 4 (2001).
    14. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, Phys. Rev. Lett., 95, 25 (2005).
    15. B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Appl. Phys. Lett., 91, 8 (2007)..
    16. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, Nature, 440, 7083 (2006).
    17. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, Nature Materials, 2, 4 (2003).
    18. P. Ghenuche, I. G. Cormack, G. Badenes, P. Loza-Alvarez, and R. Quidant, Appl. Phys. Lett., 90, 4 (2007).
    19. R. Zia, J. A. Schuller, and M. L. Brongersma, Phys. Rev. B, 74, 16 (2006).
    20. S. Sidorenko, and O. J. F. Martin, Optics Express, 15, 10 (2007).
    21. A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, Appl. Phys. Lett., 91, 8 (2007).
    22. A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, Optics Letters, 30, 8 (2005).
    23. T. Laroche, and C. Girard, Appl. Phys. Lett., 89, 23 (2006).
    24. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett., 81, 10 (2002).
    25. J. C. Weeber, M. U. Gonzalez, A. L. Baudrion, and A. Dereux, Appl. Phys. Lett., 87, 22 (2005).
    26. F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I.Bozhevolnyi, M. U.Gonzalez, J. C.Weeber, and A. Dereux, Nature physics, 3, 5 (2007).
    27. L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, Nano Letters, 5, 7 (2005).
    28. J. Y. Laluet, E. Devaux, C. Genet, T. W. Ebbesen, J. C. Weeber, and A. Dereux, Optics Express, 15, 6 (2007).
    29. L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, Appl. Phys. Lett., 91, 8 (2007).
    30. H. X. Yuan, B. X. Xu, B. Lukiyanchuk, and T. C. Chong, Appl. Phys. A-Materials Science & Processing, 89, 2 (2007).
    31. J. B. Pendry, Phys. Rev. Lett., 85, 18 (2000).
    32. A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, Nature Biotechnology., 21, 31378 (2003)
    33. L. Rayleigh, , Philos. Mag., 8, 261 (1879).
    34. E. Abbe, Archiv. F. Mikroshop, 9, 413 (1873)
    35. E. H. Synge, Phil. Mag., 6, 356 (1928).
    36. H. A. Bethe, Phys. Rev, 66, 163 (1944).
    37. C. J. Bouwkamp, Rep. Pro. Phys., 17, 35 (1954).
    38. J. A. O’Keefe, , J. Opt. Soc. Am., 46, 359 (1956).
    39. E. A. Ash, and G. Nicholls, Nature,. 237, 510 (1972).
    40. D. W. Pohl, W. Denk, and M. Lanz, Appl. Phys., 44, 651-653 (1984).
    41. A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, Ultramicroscopy, 13, 227 (1984).
    42. R. C. Reddick, R. J. Warmack, and T. L. Ferrell, Phys. Rev. B,. 39, 767-770 (1989).
    43. D. Courjon, K. Sarayeddine, and M. Spajer, Opt. Commum., 71, 23-28. (1989).
    44. E. Betzig, J. K. Trautmann, T. D. Harris, J. S. Weiner, and R. L. Kostelak, Science, 251, 1468 (1991)
    45. E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, Appl. Opt., 31, 4563 (1992).
    46. F. Zenhausern, M. P. O'Boyle, and H. K. Wickramasinghe, Appl. Lett., 65, 1623(1994).
    47. K. Karrai, and R. D. Grober, Appl. Phys. Lett., 66, 1842 (1995).
    48. J. Tominaga, , T. Nakano, and N. Atoda, Appl. Phys. Lett.,. 73, 2078 (1998).
    49. 蔡定平, 科儀新知, 第二十一第卷五期, 17 (2000).
    50. P. B. Johnson, and R. W. Christy, Phys. Rev. B, 6, 4370 (1972).
    51. http://cobweb.ecn.purdue.edu/~ece695s/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE