簡易檢索 / 詳目顯示

研究生: 趙祥萍
Chao, Hsiang-Ping
論文名稱: 組織等效比例計數器應用於貝他粒子與鄂惹電子射出核種之微劑量研究
Microdosimetry Study of Beta and Auger-electron Emitting Radionuclides using the Tissue Equivalent Proportional Counter
指導教授: 董傳中
Tung, Chuan-Jong
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 113
中文關鍵詞: 放射免疫治療標靶治療微劑量學組織等效比例計數器鄂惹電子射出核種貝他粒子射出核種
外文關鍵詞: Radioimmunotherapy, targeted therapy, microdosimetry, Tissue Equivalent Proportional Counter, Auger-electron Emitting Radionuclides, Beta Emitting Radionuclides
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於核醫標靶治療(targeted therapy)的快速發展,其中以可加強毒殺癌細胞效果的(Radioimmunotherapy, RIT)更令人感興趣,但由於其是利用單株抗體(monoclonal antibody, MoAb)將放射性核種帶至腫瘤細胞所在處,使得傳統核醫劑量評估使用之器官劑量學(organ dosimetry)已不敷用,而必須改為細胞及分子劑量評估所用之微劑量學(microdosimetry)及奈米劑量學(nanodosimetry),針對生物敏感(biological sensi- tive)之微奈米靶區(target region),進行有關輻射劑量及輻射品質的評估。放射免疫治療多使用分布於細胞表面或細胞內之短射程輻射粒子的放射性核種,譬如釋出低能量貝他粒子或鄂惹電子等核種,使之與腫瘤細胞相結合,然後利用這些輻射粒子射程短、游離性強的特性,高度選擇性地(highly selective)殺死癌細胞,以達成有效殺死大量癌細胞並避免傷及周邊正常組織細胞的目的。
    本研究使用釋出低能量貝他粒子及鄂惹電子之放射性核種,模擬其分布於細胞表面之情形,然後照射用於模擬細胞之組織等效比例計數器(Tissue Equivalent Proportional Counter, TEPC),以研究放射免疫治療核種對細胞生物敏感區內之能量沈積的分布情形,並探討這些分布所引起的生物效應關係,以期許將來可作為輻射生物、輻射防護以及核醫治療上的評估參考。


    目錄 摘要 iv 誌謝 v 圖目錄 vi 表目錄 x ㄧ、前言 1 1.1 標靶放射治療.. 1 1.1.1簡介. 1 1.1.2放射免疫治療 4 1.1.2.1抗體 8 1.1.2.2單株抗體 12 1.2 研究目的 18 二、理論基礎 20 2.1 微劑量學基本原理 20 2.2 微劑量學參數 22 2.3 微劑量學能譜表示法 25 三、實驗材料與方法 30 3.1 採用核種 30 3.2實驗設備 38 3.2.1組織等效比例計數器 38 3.2.1.1組織等效塑膠 42 3.2.1.2陽極 45 3.2.1.3組織等效氣體 47 3.2.2氣體充填系統 48 3.2.3量測系統 52 3.3 基本儀器操作與設定 58 3.3.1 微小體積之模擬 58 3.3.2 工作電壓 62 3.4 實驗方法 64 3.4.1 射源的製作及裝設 64 3.4.2 能譜轉換方式 68 3.4.3 有效相對生物效應 73 四、結果與討論 78 4.1 能量校正 78 4.2量測結果 83 4.2.1 能譜分析 83 4.2.1.1 模擬2 μm細胞核於不同大小細胞下之量測結果 87 4.2.1.2 模擬1 μm細胞核於不同大小細胞下之量測結果 91 4.2.1.3 不同細胞下量測結果比較 96 4.2.2 量測結果與有效相對生物效應 100 五、結論與未來工作 103 六、參考文獻 107

    六、參考文獻
    1. Tien, H. F. Molecular Therapy in Hematologic
    Malignancies. Formosan. J. Med. 2003; 7:212-221.
    2. Hsieh, R. K. Molecular Targeted Therapy for Solid
    Tumors. Formosan. J. Med. 2003; 7:222-226.
    3. Tien, H. F. Molecular Therapy in Hematologic
    Malignancies. Formosan. J. Med. 2003; 7:212-221.
    4. N. Chawapun. Update on clinical radiobiology. Biomed
    Imaging Interv J. 2006; 2(1):e22.
    5. Rhonda Kalyn. Overview of targeted therapies in
    Oncology. J Oncol Pharm Practice 2007; 13:199-205.
    6. Silverstein, A. M. 1988. A history of immunology.
    Academic Press, San Diego, California.
    7. Bruland OS. Cancer therapy with radiolabeled
    antibodies. An overview. Acta Oncol 1995; 34:1085-1094.
    8. Jurcic JG, Scheinberg DA. Radioimmunotherapy of
    hematological cancer: problems and progress. Clin
    Cancer Res 1995; 1:1439-1446.
    9. Kairemo KJ. Radioimmunotherapy of solid cancers: a
    review. Acta Oncol 1996; 35:343-355.
    10. Wilder RB, DeNardo GL, SJ. Radioimmunotherapy: recent
    results and future directions. J Clin Oncol 1996;
    14:1383-1400.
    11. McDevitt, M. R., G. Sgouros, R. D. Finn, J. L. Humm,
    J. G. Jurcic, S. M. Larson, and D. A. Scheinberg.
    Radioimmunotherapy with alpha-emitting nuclides. Eur J
    Nucl Med 1998; 25:1341.
    12. Wessels BW, Rogus RD. Radionuclide selection and model
    absorbed dose calculations for radiolabeled tumor
    associated antibodies. Med Phys 1984; 11:638-645.
    13. Richard A. Goldsby,Thomas J. Kindt, and Barbara A.
    Osborne, Kuby Immunology. 4th ed., W.H. Freeman and
    Company, New York, 2000.
    14. Riley, M. B., & Byar, K. The rationale for and
    background of radioimmuniotherapy : An emerging
    therapy for B-cell non-Hodgkin’s lymphoma. Seminars
    in Oncology Nursing 2004; 20(1):1-7.
    15. Zimmer, A. M. Logistics of radioimmunotherapy with
    yttrium 90 ibritumomab tiuxetan(zevalin). Seminars in
    Nuclear Medicine 2004; 34(1 Sullp 1):14-19.
    16. Kassis A. I., Adelstein S. J., Haydock C., Sastry K.
    S. R., McElvany K. D. and Welch M. J. Lethality of
    Auger electrons from the decay of bromine-77 in the
    DNA of mammalian cells. Radiat. Res. 1982; 90:362-373
    17. Sastry K. S. R. Biological effects of the Auger
    emitter iodine-125: a review. Report No 1 of AAPM
    Nuclear Medicine Task Group No 6. Med. Phys. 1992;
    19:1361-1370
    18. Ivan M. Roitt, Jonathan Brostoff, David K. Male,
    Immunology. 5th ed., Mosby International Ltd., London,
    1998.
    19. Janeway, Charles A., et al., Immunobiology: The Immune
    System in Health and Disease. 6th ed., Garland
    Science, New York, 2005.
    20. Kohler, G. and C. Milstein. Continuous cultures of
    fused cells secreting antibody of predefined
    specificity. Nature 1975; 256(5517): 495-497.
    21. Maloney, D. G., T. M. Liles, D. K. Czerwinski, C.
    Waldichuk, J. Rosenberg, A. Grillo-Lopez, and R. Levy.
    Phase I clinical trial using escalating single-dose
    infusion of chimeric anti-CD20 monoclonal antibody
    (IDEC-C2B8) in patients with recurrent B-cell
    lymphoma. Blood 1994; 84:2457.
    22. Riethmuller, G., E. Schneider-Gadicke, G. Schlimok, W.
    Schmiegel, R. Raab, K. Hoffken, R. Gruber, H.
    Pichlmaier, H. Hirche, R. Pichlmayr, and et al.
    Randomised trial of monoclonal antibody for adjuvant
    therapy of resected Dukes’ C colorectal carcinoma.
    German Cancer Aid 17-1A Study Group. Lancet 1994;
    343:1177.
    23. Handgretinger, R., K. Anderson, P. Lang, R. Dopfer, T.
    Klingebiel, M. Schrappe, P. Reuland, S. D. Gillies, R.
    A. Reisfeld, and D. Neithammer. A phase I study of
    human/mouse chimeric antiganglioside GD2 antibody ch
    14.18 in patients with neuroblastoma. Eur J Cancer
    1995; 31A:261.
    24. Burmeister J., Kota C. and Maughan R. L., Paired
    miniature tissue-equivalent proportional counters for
    dosimetry in high flux epithermal neutron capture
    therapy beams, Nucl. Instrum. Methods Phys. Res. 1999;
    A 422: 606-610.
    25. International Commission on Radiation Units and
    Measurements, Radiation Quantities and Units. Report
    33, Washington, D.C., U.S.A., 1979.
    26. International Commission on Radiation Units and
    Measurements, Microdosimetry. Report 36, Bethesda,
    Maryland, U.S.A., 1980.
    27. H. Rossi, M. Zaider, Microdosimetry and its
    applications, Springer, NY, U. S. A., 1996.
    28. Unak, T., Potential Use of Radiolabeled Glucuronide
    Prodrugs with Auger and/or Alpha Emitters in Combined
    Chemo- and Radiotherapy of Cancer, Curr. Pharm. Des.
    2000; 6:1127-1142.
    29. Ftacnikova, S. and Bohm, R., Monte Carlo Calculations
    of Energy Deposition on Cellular, Multicellular and
    Organ Level for Auger Emitters, Radiat. Protect. Dos.
    2000; 92(4):279-288.
    30. Vandieren, E. B.; Vanlingen, A. P.; Roos, J. C. and
    Teule, G. J. J., The relevance of uptake and
    Intracellular Distribution for the Dosimetry of Auger
    and Beta-Emitting Radionuclides in Micrometastases,
    Radiat. Protect. Dos. 1994; 52(1-2):391-394.
    31. K. S. R. Sastry, Biological effects of the Auger
    emitter 125I: A review. Report No. 1 of AAPM Nuclear
    Medicine Task Group No. 6. Med. Phys. 1992; 19: 1361-
    1370.
    32. K. S. R. Sastry and D. V. Rao, Dosimetry of low energy
    electrons, in Physics of Nuclear Medicine: Recent
    Advances, edited by D. V. Rao, R. Chandra, and M.
    Graham (American Institute of Physics, New York,
    1984), pp. 169-208.
    33. Humm J. L., Howell R. W. and Rao D. V., Dosimetry of
    Auger-electron-emitting radionuclides: report No 3 of
    AAPM Nuclear Medicine Task Group No. 6. Med. Phys.
    1994; 21: 1901-1915.
    34. Hofer K. G. and Hughes W. L., Radiotoxicity of
    intranuclear tritium, 125iodine and 131iodine. Radiat.
    Res. 1971; 47: 94–109.
    35. Burki H. J., Roots R., Feinendegen L. E. and Bond V.
    P., Inactivation of mammalian cells after
    disintegrations of 3H or 125I in cell DNA at -196 ℃.
    Int. J. Radiat. Biol. 1973; 24: 363–75.
    36. Chan P. C., Lisco E., Lisco H. and Adelstein S. J.,
    The radiotoxicity of iodine-125 in mammalian cells: II
    a comparative study on cell survival and cytogenetic
    responses to 125IUdR;131IUdR and 3HTdR. Radiat. Res.
    1976; 67: 332-343.
    37. Adelstein S. J., The Auger process: a therapeutic
    promise? Am. J. Roentgen. 1993; 160: 707-713.
    38. Howell R. W., Radiation spectra for Auger-electron
    emitting radionuclides: report No 2 of AAPM
    NuclearMedicine Task Group No 6. Med. Phys. 1992; 19:
    1371–1383.
    39. Sastry K. S. R., Biological effects of the Auger
    emitter iodine-125: a review. Report No 1 of AAPM
    Nuclear Medicine Task Group No 6. Med. Phys. 1992; 19:
    1361–1370.
    40. ICRP. Radionuclide Transformations: Energy and
    Intensity of Emissions., ICRP Publication 38. 1983.
    41. L.A. Braby, G.W. Johnson and J. Barthe, Practical
    considerations in the design and construction of
    tissue-equivalent proportional counters. Radiation
    Protection Dosimetry. 1995; Vol. 61, No. 4: 351-379.
    42. International Commission on Radiation Units and
    Measurements, Neutron dosimetry for biology and
    medicine. Report 26, Washington, U.S.A., 1977.
    43. International Commission on Radiation Units and
    Measurements, Tissue substitutes in radiation
    dosimetry and measurement. Report 44, Bethesda,
    Maryland, U.S.A., 1989.
    44. International Commission on Radiation Units and
    Measurements, Determination of dose equivalents
    resulting from external radiation sources. Report 39,
    Bethesda, Maryland, U.S.A., 1985.
    45. Caswell, R. S., Coyne, J. J. and Randolph, M. L.,
    Kerma Factors for Neutron Energies Below 30 MeV.
    Radiat. Res. 1980; 83: 217-254.
    46. Caswell, R. S., Coyne, J. J. and Randolph, M. L.,
    Kerma Factors of Elements and Compounds for Neutron
    Energies Below 30 MeV. Int. J. Appl. Radiat. Isot.
    1982; 33: 1227-1262.
    47. A. J. Waker, Principles of experimental
    microdosimetry. Radiation Protection Dosimetry. 1995;
    Vol. 61, No. 4: 297-308.
    48. S. Gerdung , P. Pihet, J. E. Grindborg et al.,
    Operation and application of tissue-equivalent
    proportional counters. Radiation Protection Dosimetry.
    1995; Vol. 61, No. 4: 381-404.
    49. Glenn F. Knoll, Radiation Detection and Measurement.
    3rd ed. 2000: John Wiley & Sons, Inc.
    50. J. Burmeister, C. Kota et al., Miniature tissue-
    equivalent proportional counter for BNCT and BNCEFT
    dosimetry, Med. Phys. 2001; 28 (9): 1911-1925.
    51. James E. Turner, Atoms, Radiation, and Radiation
    Prtotection. 2nd ed. 1995 by John Wiley & Sons, Inc.
    52. Hall, Eric J. Radiobiology for the Radiologist, 5th
    ed. 2000 by Lippincott Williams & Wilkins.
    53. P. Pihet, H. G. Menzel et al., Biological weighting
    function for RBE specification of neutron therapy
    beams. Intercomparison of 9 European Centres. In:
    Proc. 10th symp. on microdosimetry, Radiat. Prot.
    Dosim. 1990; 31: 431-442.
    54. S. Green, M. Gainey and C. Wojnecki, Determination of
    an RBE for an Epithermal Neutron Beam for BNCT from
    Microdosimetric Measurements, ISNCT8, LaJolla,
    California, 1998.
    55. T. Loncol, V. Cosgrove et al., Radiobiological
    effectiveness of radiation beams with broad spectra:
    microdosimetric analysis using biological weighting
    functions, Radiat. Prot. Dosim. 1994, 52: 347-352.
    56. G. Coutrakon, J. Cortese et al., Micordosimety
    spectrum of the Loma Linda proton beam and relative
    biological effectiveness comparisons, Med. Phys. 1997;
    24: 1499-1506.
    57. Range tables for using isotope:
    http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html
    58. Abrams PG, Fritzberg AR, editors. Radioimmunotherapy
    of cancer, 2000 by Marcel Dekker, New York.
    59. Bardies M, Chatal JF. Absorbed doses for internal
    radiotherapy from 22 beta-emitting radionucides: beta
    dosimetry of small spheres. Phys Med Biol 1994; 39:
    961-981.
    60. R. W. Hendricks, Space charge effects in proportional
    counters. Rev. Sci. Instrum. 1969; 40: 1216–1223.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE