研究生: |
黃心楷 Huang, Hsin-Kai |
---|---|
論文名稱: |
以Li1.3Al0.3Ti1.7(PO4)3作為鋰硫電池阻隔層及固態電解質之電化學性質研究 Investigation of Electrochemical Properties of Using Li1.3Al0.3Ti1.7(PO4)3 as Interlayer and Solid Electrolyte in Lithium-Sulfur Cell |
指導教授: |
蔡哲正
Tsai, Cho-Jen |
口試委員: |
林居南
Lin, Ju-Nan 陳翰儀 Chen, Han-Yi |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 鋰硫電池 、固態電解質 、電化學 |
外文關鍵詞: | Lithium sulfur cell, solid electrolyte, LATP |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰硫電池具有高達1675 mAh/g 的理論電容量以及2600 Wh/kg的能量密度,並且具有低成本、無毒等優勢,因此被譽為下一代最具商業化潛力的二次電池之一。然而其電化學反應所產生的多硫化物會使電池的循環壽命表現不佳,如何改善此效應是目前科學家積極克服的首要問題。
本實驗第一部分將LATP與super P披覆在隔離膜上作為鋰硫電池的阻隔層,分別與純硫和碳硫複材的極片結合做測試。發現可以大幅降低其電荷轉移阻抗,並對電池的電性和循環壽命有大幅的幫助,最佳的混和比例為LATP:super P = 1:1。
本實驗第二部分將LATP用刮刀成型法製作出厚度約50微米的緻密陶瓷薄膜,並將其組成鋰硫半固態電池。實驗發現陶瓷薄膜可以有效的阻隔多硫化物,但材料中的Ti4+若直接接觸到鋰金屬會被部分還原,且薄膜本身機械強度不高。
本實驗第三部分將LATP粉末燒結成厚度約500微米的薄錠,將陰極漿料直接滴在薄錠表面做成全固態電池。結果發現介面會因硫本身的體積膨脹產生裂縫、且材料內部晶粒因電化學反應時鋰離子的擴散導致扭曲變形,使得電性衰退。
Lithium-sulfur battery shows significant potential for next generation commercial secondary battery because of its high energy density, non-toxic, and low cost. However, shuttle effect causes its poor cycle life and limit its electrical performance. Scientists nowadays try hard to solve the issue.
The present work attempted to use NASICON type fast ion conductor LATP as interlayer and solid electrolyte in lithium-sulfur battery. At the first part, LATP was mixed with super P and then coated on separator. The result showed that it could reduce cell’s charge transfer resistance hence improved electrochemical performance significantly. At the second part, LATP thin film was fabricated by tape casting process and took it as solid interlayer in quasi-solid state battery. The result showed that it could block the polysulfide effectively, however, couldn’t contact to lithium metal due to material’s chemical activity. At the last part, LATP was fabricated into thin pellet and cathode slurry was dropped on the surface of thin pellet, then packaged into all solid cell. After charging and discharging, grain distortion in solid electrolyte and cracks were observed in SEM figures. They might cause the decay of cell’s cycle life.
1. Kane, M. http://insideevs.com/oxis-energy-teams-multi-source-power-marine-lithium-sulfur-batteries/. 2014.
2. Duan, L., F. Zhang, and L. Wang, Cathode Materials for Lithium Sulfur Batteries: Design, Synthesis, and Electrochemical Performance. Alkali-ion Batteries. 2016.
3. Busche, M.R., et al., Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates. Journal of Power Sources, 2014. 259: p. 289-299.
4. Zhang, B., et al., Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy & Environmental Science, 2010. 3(10): p. 1531-1537.
5. Li, X., et al., Optimization of mesoporous carbon structures for lithium-sulfur battery applications. Journal of Materials Chemistry, 2011. 21(41): p. 16603-16610.
6. Pang, Q., et al., Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. 2014. 5: p. 4759.
7. Cui, Z., et al., Mesoporous Titanium Nitride-Enabled Highly Stable Lithium-Sulfur Batteries. Advanced Materials, 2016. 28(32): p. 6926-6931.
8. Du, X.-L., et al., Conductive Carbon Network inside a Sulfur-Impregnated Carbon Sponge: A Bioinspired High-Performance Cathode for Li–S Battery. ACS Applied Materials & Interfaces, 2016. 8(34): p. 22261-22269.
9. Chen, H., et al., Monodispersed Sulfur Nanoparticles for Lithium–Sulfur Batteries with Theoretical Performance. Nano Letters, 2015. 15(1): p. 798-802.
10. Hart, C.J., et al., Rational design of sulphur host materials for Li-S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss. Chemical Communications, 2015. 51(12): p. 2308-2311.
11. Evers, S., T. Yim, and L.F. Nazar, Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li–S Battery. The Journal of Physical Chemistry C, 2012. 116(37): p. 19653-19658.
12. Wei Seh, Z., et al., Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nature Communications, 2013. 4: p. 1331.
13. Xie, K., et al., Ferroelectric-Enhanced Polysulfide Trapping for Lithium–Sulfur Battery Improvement. Advanced Materials, 2017. 29(6): p. 1604724-n/a.
14. Tao, X., et al., Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nature Communications, 2016. 7: p. 11203.
15. Yao, H., et al., Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface. Energy & Environmental Science, 2014. 7(10): p. 3381-3390.
16. Lin, W., et al., Enhanced Performance of Lithium Sulfur Battery with a Reduced Graphene Oxide Coating Separator. Journal of The Electrochemical Society, 2015. 162(8): p. A1624-A1629.
17. Sun, W., et al., A simply effective double-coating cathode with MnO2 nanosheets/graphene as functionalized interlayer for high performance lithium-sulfur batteries. Electrochimica Acta, 2016. 207: p. 198-206.
18. Wang, Q., et al., Electronic and ionic co-conductive coating on the separator towards high-performance lithium–sulfur batteries. Journal of Power Sources, 2016. 306: p. 347-353.
19. Nakayama, M., et al., Relationship between the Li ionic conduction and the local structures in B-site substituted perovskite compounds, (Li0.1La0.3)1+xMxNb1−xO3 (M=Zr, Ti; x=0, 0.05). Applied Physics Letters, 2002. 81(16): p. 2977-2979.
20. Inaguma, Y., et al., High ionic conductivity in lithium lanthanum titanate. Solid State Communications, 1993. 86(10): p. 689-693.
21. Kasper, H.M., Series of rare earth garnets Ln3+3M2Li+3O12 (M=Te, W). Inorganic Chemistry, 1969. 8(4): p. 1000-1002.
22. Murugan, R., V. Thangadurai, and W. Weppner, Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. Angewandte Chemie International Edition, 2007. 46(41): p. 7778-7781.
23. Goodenough, J.B., H.Y.P. Hong, and J.A. Kafalas, Fast Na+-ion transport in skeleton structures. Materials Research Bulletin, 1976. 11(2): p. 203-220.
24. Subramanian, M.A., R. Subramanian, and A. Clearfield, Lithium ion conductors in the system AB(IV)2(PO4)3 (B = Ti, Zr and Hf). Solid State Ionics, 1986. 18: p. 562-569.
25. Aono, H., et al., Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3). Solid State Ionics, 1991. 47(3): p. 257-264.
26. Bates, J.B., et al., Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics, 1992. 53: p. 647-654.
27. Kanno, R., et al., Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system. Solid State Ionics, 2000. 130(1): p. 97-104.
28. Kamaya, N., et al., A lithium superionic conductor. Nat Mater, 2011. 10(9): p. 682-686.
29. Kato, Y., et al., High-power all-solid-state batteries using sulfide superionic conductors. 2016. 1: p. 16030.
30. Breuer, S., et al., Separating bulk from grain boundary Li ion conductivity in the sol-gel prepared solid electrolyte Li1.5Al0.5Ti1.5(PO4)3. Journal of Materials Chemistry A, 2015. 3(42): p. 21343-21350.
31. Thokchom, J.S. and B. Kumar, The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glass–ceramic. Journal of Power Sources, 2010. 195(9): p. 2870-2876.
32. Chen, R., et al., The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Materials Horizons, 2016. 3(6): p. 487-516.
33. Ma, Q., et al., A Novel Sol–Gel Method for Large-Scale Production of Nanopowders: Preparation of Li1.5Al0.5Ti1.5(PO4)3 as an Example. Journal of the American Ceramic Society, 2016. 99(2): p. 410-414.
34. Chung, H. and B. Kang, Increase in grain boundary ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 by adding excess lithium. Solid State Ionics, 2014. 263: p. 125-130.