簡易檢索 / 詳目顯示

研究生: 鄭又慈
Cheng, Yo-Tzu
論文名稱: An Efficient Wakeup Scheduling Considering Resource Constraint for Sensor-Based Power Gating Designs
考慮資源限制下有效率喚醒排程技術於感測器為基礎之電源閘控設計
指導教授: 張世杰
Chang, Shih-Chieh
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 41
中文關鍵詞: 電源閘控喚醒排程技術
外文關鍵詞: power gating, wakeup scheduling
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電源閘控(power gating)是一種有效減少漏電流的方法。設計電源閘控電路必須限制電路在喚醒程序(wakeup process)中產生的浪湧電流(surge current)大小。通常來說,喚醒排程技術(wakeup scheduling)被用來控制每個睡眠電晶體打開的時間。這篇論文中,我們利用電壓感測器比較預先設計的參考電壓(reference voltage),以及虛擬接地(virtual ground)的電壓值,再利用比較的結果決定睡眠電晶體打開的時間。我們討論使用電壓感測器的特性以及最佳化的方法。另外,因為最短喚醒時間的喚醒排程技術需要消耗大量硬體資源,我們提出新的喚醒排程技術表示法,考慮喚醒時間及硬體資源的損益平衡。實驗結果顯示,增加一些喚醒時間,能大量減少硬體資源的消耗。


    Power gating has been a very effective way to reduce leakage power. One important design issue for a power gating design is to limit the surge current during the wakeup process. Normally, a wakeup scheduling is required to control turn-on times of sleep transistors. In this thesis, we adopt a voltage sensor to compare pre-designed reference voltages with the virtual ground voltage and use the comparison result to determine turn-on times of sleep transistors. Special properties and optimizations of using voltage sensors are discussed. Since a wakeup scheduling with fast wakeup time may require significant hardware resources, we propose a new wakeup scheduling formulation which considers the trade-off between wakeup times and hardware resources. Our experimental results show that with small increases on wakeup times, we can reduce significant hardware resources for a power gating design.

    Abstract i List of Contents ii List of Figures iii List of Tables iv Chapter 1 Introduction 1 Chapter 2 Sensor-Based Power Gating Structure 6 Chapter 3 Preliminary 9 Chapter 4 Designing a Sensor-Based Wakeup Scheduling 12 4.1 Deciding the Voltage to Turn On the Next Group of Sleep Transistors 13 4.2 The Optimal Wakeup Scheduling without Considering Resource Constraint 18 4.3 The Cost of a Wakeup Scheduling 21 Chapter 5 Wakeup Scheduling Algorithm with Resource Constraint 23 5.1 The Problem of Designing a Wakeup Scheduling Considering Resource Constraint 24 5.2 An Optimal Wakeup Scheduling Algorithm Considering Resource Constraint 27 5.3 Estimating the Time Duration to Turn On the Next Group of Sleep Transistors 30 Chapter 6 Experimental Results 34 Chapter 7 Conclusions 39 References 40

    [1] A. Abdollahi, F. Fallah and M. Pedram, “A Robust Power Gating Structure and Power Mode Transition Strategy for MTCMOS Design,” IEEE Transactions on VLSI Systems, vol. 15, no. 1, January 2007.
    [2] P. E. Allen and D. R. Hoberg, CMOS Analog Circuit Design, Oxford University press. NY, pp.323-362.
    [3] D. Andrade, F. Martorell, A. Calomarde, F. Moll, and A. Rubio, "A New Compensation Mechanism for Environmental Parameter Fluctuations in CMOS Digital ICs," Microelectronics Journal, 2009.
    [4] Y. T. Chen, D. C. Juan, M. C. Lee and S. C. Chang, “An Efficient Wake-up Schedule during Power Mode Transition Considering Spurious Glitches Phenomenon,” Proc. of the ICCAD, pp. 779-782, 2007.
    [5] D.S. Chiou, S.H. Chen, S.C. Chang, and C.W. Yeh, “Timing Driven Power Gating,” Proc. of the DAC, pp. 121-124, 2006.
    [6] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms - Second Edition, The MIT Press, 2001.
    [7] A. Davoodi and A. Srivastava, "Wake-up Protocols for Controlling Current Surges in MTCMOS-based Technology," Proc. of the DAC, pp. 868-871, vol.2, 2005.
    [8] H. Jiang and M. Marek-Sadowska, “Power Gating Scheduling for Power/Ground Noise Reduction,” Proc. of the DAC, pp.980-985, 2008.
    [9] H. Jiang, M. Marek-Sadowska and S. R. Nassif, “Benefits and Costs of Power-Gating Technique,” Proc. of the ICCD, pp. 559-566, 2005.
    [10] S. Kim, S. V. Kosonocky and D. R. Knebel, “Understanding and Minimizing Ground Bounce During Mode Transition of Power Gating Structures,” Proc. of the ISLPED, pp. 22-25, August 25-27, 2003.
    [11] Y. Lee, D-K Jeong, and T. Kim, “Simultaneous Control of Power/Ground Current, Wakeup Time and Transistor Overhead in Power Gated Circuits,” Proc. of the ICCAD, pp. 169-172, 2008.
    [12] F. Li and L. He, “Maximum Current Estimation Considering Power Gating,” Proc. of the ISPD, pp. 106-111, April 1-4, 2001.
    [13] F. Li, L. He and K. K. Saluja, “Estimation of Maximum Power-up Current,” Proc. of the VLSID, pp. 51-56, 2002.
    [14] C. Long and L. He, “Distributed Sleep Transistor Network for Power Reduction,” IEEE Transaction on VLSI systems, vol. 12, no. 9, pp. 937-946, September 2004.
    [15] A. Ramalingam, A. Devgan and D. Z. Pan, “Wakeup Scheduling in MTCMOS Circuits Using Successive Relaxation to Minimize Ground Bounce,” Journal of Low Power Electronics, vol.3, pp. 1-8, 2007.
    [16] A. Sagahyroon and F. Aloul, “Maximum Power-Up Current Estimation in Combinational CMOS Circuits,” Proc. of the IEEE MELECON, pp. 70-73, May 16-19, 2006.
    [17] T. Sato, A. Inoue, T. Shiota, T. Inoue, Y. Kawabe, T. Hashimoto, T. Imamura, Y. Murasaka, M. Nagata, and A. Iwata, "On-Die Supply-Voltage Noise Sensor with Real-Time Sampling Mode for Low-Power Processor Applications," pp. 290-603, Proc. of the ISSCC, 2007.
    [18] A. S. Sendra and K. C. Smith, Microelectronic Circuits - Fourth Edition, Oxford University Press, 1998.
    [19] K. Shi, and D. Howard, “Challenges in Sleep Transistor Design and Implementation in Low-Power Designs,” Proc. of the DAC, pp. 113-116, July 24-28, 2006.
    [20] H. Xu, W. B. Jone, and R. Bemuri, “Accurate Energy Breakeven Time Estimation for Run-time Power Gating,” Proc. of the ICCAD, pp. 161-168, November 10-13 , 2008

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE