研究生: |
許智盛 Hsu, Chih-Sheng |
---|---|
論文名稱: |
對室溫下甲基銨碘化鉛鈣鈦礦使用正交分解簡正模分析識別方向性運動的理論研究 A Theoretical Investigation on the Identification of Orientational Motions by using Orthogonal Decomposition Normal Mode Analysis in the Methylammonium Lead Iodide Perovskite at Room Temperature |
指導教授: |
林倫年
Hayashi, Michitoshi 倪其焜 Ni, Chi-Kung |
口試委員: |
陳應誠
Chen, Ying-Cheng 寺西慶哲 Teranishi, Yoshiaki 許良彥 Hsu, Liang-Yan |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 96 |
中文關鍵詞: | 鈣鈦礦 、簡正模分析 、甲基銨 、方向性運動 、正交分解 、天平動 |
外文關鍵詞: | perovskite, normal-mode-analysis, methylammonium, orientational-motion, orthogonal-decomposition, libration |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於間接能帶間隙的存在,鈣鈦礦中需要聲子輔助的載子復合顯著延長了載子的生命期。甲基銨碘化鉛鈣鈦礦中,間接能帶間隙的形成對應於碘化鉛八面體籠的變形,而此變形是由甲基銨陽離子的特定方位指向所引起。然而,由熱紊變導致的甲基銨陽離子特定方位指向以及相對應的碘化鉛八面體籠變形的清晰路徑尚未完全釐清。我們提出了四方甲基銨碘化鉛鈣鈦礦的簡正模分析,以完整觀察一平衡附近的所有熱紊變;對於簡正模分析每一模態下的甲基銨方位指向研究,我們開發了正交分解簡正模分析,使用投影矩陣進行包括正交分解方法和天平動識別方法;最後,我們發現了具有以下條件的特殊簡正模態(a)在室溫下活躍(b)同時包含碘化鉛八面體籠的變形以及甲基銨方位指向的天平動變化,因此預期(c)此類特殊簡正模態包含形成間接能帶間隙的特定甲基銨方位指向。
The phonon-assisted carrier recombination through the indirect bandgap remarkably elongates the lifetime of carriers in perovskites. The formation of indirect bandgaps in the methylammonium (MA) lead iodide perovskite (MAPbI3) corresponds to the distortion of the lead iodide octahedral cage induced by specific orientations of the MA cation. However, clear routes to reach these specific orientations and the distortion thereof during thermal fluctuations have not been fully specified. Here we present the normal mode analysis of the tetragonal MAPbI3 perovskite for a complete observation of all thermal fluctuations in the vicinity of an equilibrium; for the MA orientation studies within each mode of the normal mode analysis, we develop the orthogonal decomposition normal mode analysis consisting of the orthogonal decomposition method and the librational identification method both using projection matrices; in the end, we find distinct normal modes that (a) are active at room temperature, (b) each contains the lead iodide distortion together with librationally varying MA orientations, and therefore (c) are anticipated to involve indirect-gap MA orientations.
1. Haertling, G. H., Ferroelectric Ceramics: History and Technology. Journal of the American Ceramic Society 1999, 82, 797-818.
2. Megaw, H. D., Crystal Structure of Barium Titanate. Nature 1945, 155, 484-485.
3. Miyake, S.; Ueda, R., On Polymorphic Change of BaTiO3. Journal of the Physical Society of Japan 1946, 1, 32-33.
4. Vonhippel, A.; Breckenridge, R. G.; Chesley, F. G.; Tisza, L., High Dielectric Constant Ceramics. Industrial and Engineering Chemistry 1946, 38, 1097-1109.
5. Wainer, E., High Titania Dielectrics. Transactions of the Electrochemical Society 1946, 89, 331-356.
6. Izyumskaya, N.; Alivov, Y.; Cho, S. J.; Morkoc, H.; Lee, H.; Kang, Y. S., Processing, Structure, Properties, and Applications of PZT Thin Films. Critical Reviews in Solid State and Materials Sciences 2007, 32, 111-202.
7. Kingon, A. I.; Srinivasan, S., Lead Zirconate Titanate Thin Films Directly on Copper Electrodes for Ferroelectric, Dielectric and Piezoelectric Applications. Nature Materials 2005, 4, 233-237.
8. Trolier-McKinstry, S.; Muralt, P., Thin Film Piezoelectrics for MEMS. Journal of Electroceramics 2004, 12, 7-17.
9. Kreuer, K. D., Proton-Conducting Oxides. Annual Review of Materials Research 2003, 33, 333-359.
10. Cava, R. J.; Batlogg, B.; Vandover, R. B.; Murphy, D. W.; Sunshine, S.; Siegrist, T.; Remeika, J. P.; Rietman, E. A.; Zahurak, S.; Espinosa, G. P., Bulk Superconductivity at 91-K in Single-Phase Oxygen-Deficient Perovskite Ba2YCu3O9-Delta. Physical Review Letters 1987, 58, 1676-1679.
11. Maeno, Y.; Hashimoto, H.; Yoshida, K.; Nishizaki, S.; Fujita, T.; Bednorz, J. G.; Lichtenberg, F., Superconductivity in a Layered Perovskite without Copper. Nature 1994, 372, 532-534.
12. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341-344.
13. Tong, J., et al., Carrier Lifetimes of >1 μs in Sn-Pb Perovskites Enable Efficient All-Perovskite Tandem Solar Cells. Science 2019.
14. Motta, C.; El-Mellouhi, F.; Kais, S.; Tabet, N.; Alharbi, F.; Sanvito, S., Revealing the Role of Organic Cations in Hybrid Halide Perovskite CH3NH3PbI3. Nature Communications 2015, 6, 7026.
15. Zheng, F.; Tan, L. Z.; Liu, S.; Rappe, A. M., Rashba Spin–Orbit Coupling Enhanced Carrier Lifetime in CH3NH3PbI3. Nano Letters 2015, 15, 7794-7800.
16. Etienne, T.; Mosconi, E.; De Angelis, F., Dynamical Origin of the Rashba Effect in Organohalide Lead Perovskites: A Key to Suppressed Carrier Recombination in Perovskite Solar Cells? The Journal of Physical Chemistry Letters 2016, 7, 1638-1645.
17. Azarhoosh, P.; McKechnie, S.; Frost, J. M.; Walsh, A.; van Schilfgaarde, M., Research Update: Relativistic Origin of Slow Electron-Hole Recombination in Hybrid Halide Perovskite Solar Cells. APL Materials 2016, 4, 091501.
18. Hutter, E. M.; Gélvez-Rueda, M. C.; Osherov, A.; Bulović, V.; Grozema, F. C.; Stranks, S. D.; Savenije, T. J., Direct–Indirect Character of the Bandgap in Methylammonium Lead Iodide Perovskite. Nature Materials 2016, 16, 115.
19. Umari, P.; Mosconi, E.; De Angelis, F., Relativistic Gw Calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications. Scientific Reports 2014, 4, 4467.
20. Taylor, J. R., Classical Mechanics; University Science Books: Sausalito, Calif., 2005, p xiv, 786 p.
21. Case, D. A., Normal Mode Analysis of Protein Dynamics. Current Opinion in Structural Biology 1994, 4, 285-290.
22. Bahar, I.; Lezon, T. R.; Bakan, A.; Shrivastava, I. H., Normal Mode Analysis of Biomolecular Structures: Functional Mechanisms of Membrane Proteins. Chemical Reviews 2010, 110, 1463-1497.
23. Brivio, F.; Frost, J. M.; Skelton, J. M.; Jackson, A. J.; Weber, O. J.; Weller, M. T.; Goñi, A. R.; Leguy, A. M. A.; Barnes, P. R. F.; Walsh, A., Lattice Dynamics and Vibrational Spectra of the Orthorhombic, Tetragonal, and Cubic Phases of Methylammonium Lead Iodide. Physical Review B 2015, 92, 144308.
24. Pérez-Osorio, M. A.; Champagne, A.; Zacharias, M.; Rignanese, G.-M.; Giustino, F., Van Der Waals Interactions and Anharmonicity in the Lattice Vibrations, Dielectric Constants, Effective Charges, and Infrared Spectra of the Organic–Inorganic Halide Perovskite CH3NH3PbI3. The Journal of Physical Chemistry C 2017, 121, 18459-18471.
25. Park, M.; Neukirch, A. J.; Reyes-Lillo, S. E.; Lai, M.; Ellis, S. R.; Dietze, D.; Neaton, J. B.; Yang, P.; Tretiak, S.; Mathies, R. A., Excited-State Vibrational Dynamics toward the Polaron in Methylammonium Lead Iodide Perovskite. Nature Communications 2018, 9, 2525.
26. Pérez-Osorio, M. A.; Milot, R. L.; Filip, M. R.; Patel, J. B.; Herz, L. M.; Johnston, M. B.; Giustino, F., Vibrational Properties of the Organic–Inorganic Halide Perovskite CH3NH3PbI3 from Theory and Experiment: Factor Group Analysis, First-Principles Calculations, and Low-Temperature Infrared Spectra. The Journal of Physical Chemistry C 2015, 119, 25703-25718.
27. Strang, G., Linear Algebra and Its Applications, 4th ed.; Thomson, Brooks/Cole: Belmont, CA, 2006, p viii, 487 p.
28. Dovesi, R., et al., Quantum-Mechanical Condensed Matter Simulations with Crystal. Wiley Interdisciplinary Reviews: Computational Molecular Science 2018, 8, e1360.
29. Whitfield, P. S.; Herron, N.; Guise, W. E.; Page, K.; Cheng, Y. Q.; Milas, I.; Crawford, M. K., Structures, Phase Transitions and Tricritical Behavior of the Hybrid Perovskite Methyl Ammonium Lead Iodide. Scientific Reports 2016, 6, 35685.
30. Becke, A. D., Density‐Functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Chemical Physics 1993, 98, 5648-5652.
31. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B 1988, 37, 785-789.
32. Piskunov, S.; Heifets, E.; Eglitis, R. I.; Borstel, G., Bulk Properties and Electronic Structure of SrTiO3, BaTiO3, PbTiO3 Perovskites: An Ab Initio HF/DFT Study. Computational Materials Science 2004, 29, 165-178.
33. Peintinger, M. F.; Oliveira, D. V.; Bredow, T., Consistent Gaussian Basis Sets of Triple-Zeta Valence with Polarization Quality for Solid-State Calculations. Journal of Computational Chemistry 2013, 34, 451-459.
34. http://www.crystal.unito.it/basis-sets.php.
35. Quarti, C.; Mosconi, E.; De Angelis, F., Interplay of Orientational Order and Electronic Structure in Methylammonium Lead Iodide: Implications for Solar Cell Operation. Chemistry of Materials 2014, 26, 6557-6569.
36. Capaz, R. B.; Spataru, C. D.; Tangney, P.; Cohen, M. L.; Louie, S. G., Temperature Dependence of the Band Gap of Semiconducting Carbon Nanotubes. Physical Review Letters 2005, 94, 036801.