簡易檢索 / 詳目顯示

研究生: 陳明宗
論文名稱: 316低碳不□鋼在冠狀動脈金屬支架應用之微結構與電化學分析
Microstructural and Electrochemical Evaluation of Bio-grade 316LVM Stainless Steel for Intracoronary Stent
指導教授: 杜正恭
Jenq-Gong Duh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
中文關鍵詞: 歐傑電子能譜分析能譜峰值解析穿透式電子顯微鏡分析氧化鉻硝酸鈍化抗蝕316不□鋼金屬支架
外文關鍵詞: AES Analysis, Spectrum Deconvolution, TEM Analysis, Chromium Oxide, Nitric Acid Passivation, Corrosion Resistance, 316 Stainless Steel, Stent
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究乃是以硝酸鈍化法和熱氧化法在醫用級316LVM 不□鋼上長一層鈍化保護層,研究保護層之微結構與電化學性質,以應用在心血管擴張術的金屬支架材料。
    在316L不□鋼上做硝酸鈍化前,表面需進行酸洗去除表面氧化雜物顆粒。此氧化雜物顆粒經由電子微探儀(EPMA)的X-ray mapping發現為由氧化鋁和氧化鈣所組成。為了有效去除此氧化雜物顆粒,本實驗根據氧化雜物顆粒組成改良酸洗步驟,並比較不同酸洗處理之後的效果。經極化曲線的量測發現,以高濃度的氫氟酸/硝酸混合液酸洗後,再加上檸檬酸的酸洗處理可以得到較好的酸洗效果。

    除了需將氧化雜物顆粒去除外,硝酸的鈍化條件也相當重要。在本實驗中觀察到隨著鈍化溫度增加而崩潰電壓愈高。此外,經由熱氧化法所得到的鈍化膜,其崩潰電壓介在原始線材和經過硝酸鈍化之間,這表示硝酸鈍化法所得到的得到鈍化膜保護效果較熱氧化法佳。

    若經過表面處理的線材鈍化膜崩潰電壓接近1 VSCE時,則在本實驗中定義為「完全鈍化」。研究發現,在低溫(60℃, 80℃)做硝酸鈍化處理的線材其完全鈍化的機率比在高溫下(96℃)要來得低。若表面的氧化雜物顆粒沒有完全去除,就算在高溫下做鈍化處理,其完全鈍化的機率約只有20%,若將氧化雜物顆粒完全去除後,則完全鈍化的機率將高達60%。這結果顯示,只有在將表面氧化雜物顆粒完去除後,非晶型氧化膜才能更有效的保護不□鋼線材。

    為了研究鈍化膜的微觀結構、鍵結態和元素分佈,本實驗利用穿透式電子顯微鏡(TEM)、X光能譜儀(XPS or ESCA)和歐傑電子能譜儀(AES)進行分析。研究結果發現以硝酸鈍化法生成之鈍化膜為非晶型結構,表面主要的氧化物成份為氧化鉻(Cr2O3)、氫氧化鉻(CrOOH),而經由熱氧化法所生成氧化膜和原始線材的氧化膜主要由氧化鐵(Fe2O3)和氧化鉻(Cr2O3)所組成。鈍化的機制和鈍化膜結構將在結論與討論中提出,並期望實驗結果可以做為評估金屬支架的理論基楚。


    List of Tables…………………………………………………Ⅳ Figures Caption………………………………...…………….Ⅴ Abstract……………………………..……………………..ⅩⅡ Chapter Ⅰ Introduction…………………..……………..………1 Chapter Ⅱ Literature Review……………..…………………...4 2.1 Biomedical application of 316L stainless steel in stent……….4 2.1.1 Introduction of stent………………………..……………...4 2.1.2 Material of stent………….………………………………..4 2.1.2.1 NiTi………………………………………………....5 2.1.2.2 316L stainless steel………………………………....5 2.1.3 Surface treatments of 316L stainless steel in stent application…………………………………………………..6 2.1.3.1 Surface coatings………………………………….…7 Gold coating……………………………………………7 Polymer coating………………………………………..7 HA Coating…………………………………………….8 2.1.3.2 Surface modification…………………………..……8 Ion implantation………………………………………..9 Oxidation…………………………………………...…10 2.2 Passive films on 316L stainless steel……………..…….……..16 2.2.1 Microstructure and thickness of passive films………16 2.2.2 Composition distribution of passive films……..……18 2.3 Electrochemical characterization of passive films………...33 2.3.1 Effects of surface roughness and surface inclusions on corrosion resistant…………………………………….33 2.3.2 Corrosion resistance of the passive film…………….34 2.3.3 The effects of Chloride ions and hydrogen ions in corrosion resistance………………………………...…37 Chloride ions………………………………………….37 Hydrogen ion………………………………………….38 2.4 In vitro and in vivo biocompability tests of 316L stainless steel……………………….……………………………………54 2.4.1 Nickel release and toxicity to cell………………..….54 2.4.2 Anti-thrombosis……………………………………..56 Chapter Ⅲ Experimental Procedure…………….…………..61 3.1 Specimens preparation…………………………………..……61 3.2 Passivation process…………………………………………....61 3.2.1 Pickling………………………………………………..…61 3.2.2 Passivation……………………………………………….61 3.3 Anodic polarization test…………………………………..…..62 3.4 Microstructure characterization……………………..………62 3.4.1 AES analysis………………………………………….….62 3.4.2 ESCA analysis…………………………………………...63 3.4.3 TEM analysis…………………………………………….63 Chapter Ⅳ Results and Discussion…………………………..66 4.1 Surface characterization…………………………………..….66 4.2 Electrochemical results………………………………………..67 4.3 Microstructure of the passive film…………………………...70 4.4 Composition and concentration profile of passive films…....71 4.4.1 ESCA (XPS) analysis…………………………………....71 4.4.2 AES analysis……………………………………………..74 4.5 Oxide formation Mechanism……………………...………….76 Chapter Ⅴ Conclusions…………………………….……106 Reference………………………………...………………….108

    1. C. Trépanier, M. Trabrizian, L’H. Yahia, L. Bilodeau and D. L. Piron, “Effect of Modification of Oxide Layer on NiTi Stent Corrosion Resistance”, Journal of Biomedical Materials Research, 43, p. 433-440, 1998
    2. P. Haudrechy, J. Foussereau, B. Mantout and B. Baroux, “Nickel Release from Nickel-Plated Metals and Stainless Steels”, Contact Dermatitis, 31, p. 249-255, 1994
    3. C. C. Shih, S. J. Lin, Y. L. Chen, Y. Y. Su, S. T. Lai, G. J. Wu, C. F. Kwok and K. H. Chung, “Increased Corrosion Resistance of Stent Materials by Converting Current Surface Film of Polycrystalline Oxide into Amorphous Oxide”, Journal of Biomedical Materials Research, 52(2), p. 323-332, 2000
    4. Y. Y. Su, ”The Quest for Wire Surface Quality for Medical Applications”, Wire Journal International, 31(2), p. 106-113, 1998
    5. T. M. Yue, J. K. Yu and H. C. Man, “The Effect of Excimer Laser Surface Treatment on Pitting Corrosion Resistance of 316LS Stainless Steel”, Surface coatings Technology, 137, p. 65-71, 2001
    6. J. A. Disegi, “Anodizing Treatment for Titanium Implants”, p. 129-132, IEEE, 1997
    7. F. S. Shieu, M. J. Deng and S. H. Lin, “Microstructure and Corrosion Resistance of A Type 316L Stainless Steel”, Corrosion Science, 40(8), p. 1267-1279, 1998
    8. M. A. Barbosa, “The Pitting Resistance of AISI 316 Stainless Steel Passivated in Diluted Nitric Acid”, Corrosion Science, 23(12), p. 1293-1305, 1983
    9. T. Hong, T. Ogushi and M. Nagumo, “The Effect of Chromium Enrichment in the Film Formed by Surface Treatments on the Corrosion resistance of Type 430 Stainless Steel”, Corrosion Science, 38, p. 881-888, 1996
    10. K. Sasaki and G. T. Burstein, “The Generation of Surface Roughness During Slurry Erosion-Corrosion and It’s Effect on the Pitting Potential”, Corrosion Science, 38, p. 2111-2120, 1996
    11. T. Hong, M. Nagumo and W. P. Jepson, “Influence of HNO3 Treatments on the Early Stages of Pitting of Type 430 Stainless Steel”, Corrosion Science, 42, p. 289-298, 2000
    12. G. Salvago and G. Fumalli, “The Distribution of Stainless Steel Breakdown Potentials: The Effect of Surface Finishing Degree and HNO3 Treatment”, Corrosion Science, 36(4), p. 733-742, 1994
    13. S. Bera, S. Rangarajan and S. V. Narasimhan, “Electrochemical Passive of Iron Alloys and the Film Characterization by XPS”, Corrosion Science, 42, p. 1709-1724, 2000
    14. J. F. Dyet, W. G. Watts, D. F. Ettles, A. A. Nicholson, “Mechanical Properties of Metallic Stents: How Do These Properties Influence the Choice of Stent for Specific Lesions?”, Cardiovascular and Interventional Radiology, 23, p. 47-54, 2000
    15. M. Berger-Gorbet, B. Broxup, C. Rivard and L’H. Yahia, ”Biocompatibility Testing of NiTi Screws Using Immunohistochemistry on Sections Containing Metallic Implants”, Journal of Biomedical Material Research, 32, p. 243-248, 1996
    16. N. L. Eigler, M. J. Khorsandi and J. S. Forrester, “Implantation and Recovery of Temporary Stents in Canine Coronary Arteries”, Journal of the American College of Cardiology, 22, p. 1207-1213, 1993
    17. A. H. Cragg, CD. J. Steven and H. BA. William, “Nitinol Intravascular Stent Results of Preclinical Evaluation”, Radiology, 189, p. 775-778, 1993
    18. M. K. Hong, R. Beyar, R. Kornowski and F. O. Tio, “Acute and Chronic Effects of Self-Expanding Nitinal Stents in Porcine Coronary Arteries”, Coronary Artery Disease, 8, p. 45-48, 1997
    19. R. Beyar, R. Shofti, E. Grenedier, M. Henry, O. Globerman and M. Beyar, “Self-Expandable Nitinol Stent for Cardiovascular Applications” Canine and Human Experience”, Catheterization and Cardiovascular Diagnosis, 32, p. 162-170, 1994
    20. M. L. Escudero, M. F. López and J. Ruiz, “Comparative Study of the Corrosion Behavior of MA-956 and Conventional Metallic Biomaterials”, Journal of Biomedical Materials Research, 31, p. 313-317, 1996
    21. C. Beuters and J. M. Isner, “The Biology of Restenosis”, Progress in Cardiovascular Diseases, 40(2), p. 107-116, 1997
    22. S. Verheye, C. P. Markou and M. Y. Salame, “Reduced Thrombus Formation by Hyaluronic Acid Coating of Endovascular Devices”, Arteriosclerosis Thrombosis, and Vascular Biology, 20, p. 1168-1172, 2000
    23. T. Matsuhashi, H. Miyachi and K. Sakamoto, “In Vivo Evaluation of a Fluorine-Acryl-Stylene-Urethane-Silicone Antithrombogenic Coating Material Copolymer for Intravascular Stents”, Acad Radiol., 3, p. 581-588, 1996
    24. E. Alt and C. Seliger, “Antithrombotic Stent Coatings: Hirudin/Iloprost Combination”, Seminars in Interventional Cardiology, 3, p. 177-183, 1998
    25. H. Zitter and Jr. H. Plenk, “The Electrochemical Behavior of Metallic Implant Materials As an Indicator of their Biocompatibility”, Journal of Biomedical Materials Research, 21, p. 881-896, 1987
    26. M. J. Ignatius, N. Sawhney and A. Gupta, “Bioactive Surface Coatings for Nanoscale Instruments: Effects on CNS Neurons”, Journal of Biomedical Material Research, 40, p. 264-274, 1998
    27. A. Kastrati, A. Schőmig and J. Dirschinger, “Increased Risk of Restenosis After Placement of Gold-Coated Stents. Results of a Randomized Trial Comparing Gold-Coated with Uncoated Steel Stents in Patients With Coronary Artery Disease”, Circulation, 101, p. 2478-2487, 2000
    28. Van der Giessen WJ, “Coronary Stenting with Polymer Coated and Not Coated Wallstent Self-Expanding Endoprostheses in Pigs”, Coronary Artery Disease, 3, p. 631-640, 1992
    29. W. J. Giessen, C. J. Slager, E. J. Gussenhoven and J. C. Schuurbiers, “Mechanical Features and In Vivo Imaging of a Polymer Stent”, International Journal of Cardiac Imaging, 9, p. 219-226, 1993
    30. I. K. De Scheerder, K. L. Wilczek, E. V. Verbeken and J. Vandorpe, ”Biocompatibility of Biodegradable and Nonbiodegradable Polymer-Coated Stents Implanted in Porcine Peripheral Arteries”, Cardiovascular and Interventional Radiology, 18, p. 227-232, 1995
    31. J. D. Mitchell, R. Lee, G. T. Hodakowaki and K. N. Neya, ”Prevention of Postoperative Pericardial Adhesions With A Hyaluronic Acid Coating Solution: Experimental Safety and Efficacy Studies”, The Journal of Thoracic and Cardiovascular Surgery, 107, p. 1481-1488, 1994
    32. R. A. Buchanan and I. S. Lee, “Surface Modification of Biomaterials Though Noble Metal Ion Implantation”, Journal of Biomedical Materials Research, 24, p. 309-318, 1990
    33. F. T. Hambrecht, “Bioelectrodes for Neural Prostheses”, Biomedical Materials, J. M. Williams, M. F. Nichols, and W. Zingg, (eds.), Material Research Society Symposium Proceeding, 55, Materials Research Society, Pittsburgh, 1986, p. 265-272
    34. P. Marcus, “XPS Study of the Passive Films Formed on Nitrogen-Implanted Austenitic Stainless Steels”, Applied Surface Science, 59, p. 7-21, 1992
    35. S. Fujimoto, T. Shibata and N. Matsumoto, ”Improvement of Localized Corrosion Resistance of Austenitic Stainless Steel by N, Cr and Mo Ion Implantation”, p. 1074-1077, IEEE, 1999
    36. J. A. Painter, G. S. Mintz, S. C. Wong and J. J. Popma, “Serial Intravascular Ultrasound Studies Fail to Show Evidence of Chronic Palmaz-Schatz Stent Recoil”, The American Journal of Cardiology, 75, p. 398-400, 1995
    37. R. Hoffmann, G. S. Mintz, G. R. Dussaillant and J. J. Popma, “Patterns and Mechanisms of In-Stent Restenosis: A Serial Intravascular Ultrasound Study”, Circulation, 94, p. 1247-1254, 1996
    38. E. R. Edelman and C. Rogers, “Hoop Dreams: Stetns Without Restenosis”, Circulation, 94, p. 1199-1202, 1996
    39. J. R. Laird, A. J. Carter, W. M. Kufs and T. G. Hoopes, “Inhibition of Neointimal Proliferation With Low-Dose Irradiation Formβ-particle Emitting Stent”, Circulation, 93(3), p. 529-536, 1996
    40. A. J. Carter, J. R. Laird, L. R. Bailey and T. G. Hoopes, ”Effects of Endovascular Radiation From a β-particle Emitting Stent in a Porcine Restenosis Model. A Dose Response Study”, Circulation, 94, p. 2364-2368, 1996
    41. C. Hehrlein, R. Kinscherf, K. Schlösser and E. Huttel, “Low-dose Radioactive Endovascular Stents Prevent Smooth Muscle Cell Proliferation and Neointimal Hyperplasia in Rabbits”, Circulation, 93, p. 641-645, 1996
    42. A. J. Carter and T. A. Fischell, “Current Status of Radioactive Stents for the Prevention of in-stent Restenosis”, International Journal of Radiation Oncology Biology Physiscs, 41(1), p. 127-133, 1998
    43. F. Villermauy, M. Tabrizian, L’H. Yahia and M. Meunier, ”Excimer Laser Treatment of NiTi Shape Memory Alloy Biomaterials”, Applied Surface Science, 110, p. 62-66, 1997
    44. S. Ohkido, Y. Ishikawa and T. Yoshimura, “POSAP Analysis of the Oxide-Alloy Interface in Stainless Steel”, Applied Surface Science, 76/77, p. 261-265, 1994
    45. T. Ohmi, Y. Nakagawa, M. Nakamura and A. Ohki, ”Formation of Chromium Oxide on 316L Austenitic Stainless Steel”, Journal of Vacuum Science and Technology, A14(4), p. 2505-2510, 1996
    46. B. Cho and S. Chung, ”Direct Observation of Oxygen-Induced Structural Changes in Stainless Steel Surface”, Journal of Vacuum Science Technology, B18(2), p. 868-872, 2000
    47. ASTM Standards F86-68, ”Surface Requirements of Metallic Surgical Implants”, ASTM, Philadelphia, PA, 19103
    48. Karl Hauffe, “Oxidation of Metals”, plenum press, New York, 1965, chapter 7
    49. K. Asami and K. Hashimoto, “An X-Ray Photoelectron Spectroscopic Study of Surface Treatments of Stainless Steels”, Corrosion Science, 19, p. 1007-1017, 1979
    50. Karl Hauffe, “Oxidation of Metals”, plenum press, New York, 1965, chapter 4
    51. K. Hashimoto and K. Asami, “An X-ray Photoelectron Spectroscopic Study of the Passivity of Ferritic 19Cr Stainless Steel in 1N HCl”, Corrosion Science, 19, p. 251-260, 1979
    52. Y. Okazaki, T. Tateishi and Y. Ito, “Corrosion Resistance of Implant Alloys in Pseudo Physiological Solution and Role of Alloying Elements in Passive Films”, Materials Transactions, JIM, 38(1), p. 78-84, 1997
    53. M. F. López, A. Gutiérrz, C. L. Torres and J. M. Bastidas, “Soft X-ray Absorption Spectroscopy Study of Electrochemically Formed Passive Layers on AISI 304 and 316L Stainless Steels”, Journal of Material Research, 14(3), p. 763-770, 1999
    54. N. E. Hakiki, S. Boudin, B. Rondot and M. DA. C. Belo, “The Electronic Structure of Passive Films Formed on Stainless Steels”, Corrosion Science, 37(11), p. 1809-1822, 1995
    55. A. M. Beccaria, G. Poggi and G. Castello, “Influence of Passive Film Composition and Sea Water Pressure on Resistance to Localised Corrosion of Some Stainless Steel in Sea Water”, British Corrosion Journal, 30(4), p. 283-287, 1995
    56. B. Stypula and J. Stoch, “The Characterization of Passive Films on Chromium Electrodes by XPS”, Corrosion Science, 36(12), p. 2159-2167, 1994
    57. K. Asami, K. Hashimoto and S. Shimodaira, “XPS Determination of Compositions of Alloy Surfaces and Surface Oxides on Mechanically Polished Iron-Chromium Alloys”, Corrosion Science, 17, p. 713-723, 1977
    58. K. Asami, K. Hashimoto and S. Shimodaira, “An XPS Study of the Passivity of a Series of Iron-Chromium Alloys in Sulphuric Acid”, Corrosion Science, 18, p. 151-160, 1978
    59. M. F. Montemor, M. G. S. Ferreira and N. E. Hakiki, “Chemical Composition and Electronic Structure of the Oxide Films Formed on 316L Stainless Steel and Nickel Based Alloys in High Temperature aqueous Environments”, Corrosion Science, 42, p. 1635-1650, 2000
    60. K. Hashimoto, K. Asami and K. Teramoto, “An X-ray Photo-Electron Spectroscopy Study on the Role of Molybdenum in Increasing the Corrosion Resistance of Ferritic Stainless Steels in HCl”, Corrosion Science, 19, p. 3-14, 1979
    61. P. Schmuki and H. Böhni, “Metastable Pitting and Semiconductive Properties of Passive Films“, Journal of Electrochemical Society, 139(7), p. 1908-1913, 1992
    62. N. Sato, “Anodic Breakdown of Passive Film on Metals“, Journal of Electrochemical Society, 129, p. 255-260, 1982
    63. T. Hong and M. Nagumo, “Effect of Surface Roughness on Early Stages of Pitting Corrosion of Type 301 Stainless Steel”, Corrosion Science, 39(9), p. 1665-1672, 1997
    64. G. T. Burstein and P. C. Pistorius, “Surface Roughness and the Metastable Pitting of Stainless Steel in Chloride Solutions“, Corrosion Science, 33, p. 380-385, 1992
    65. D. Wallinder, J. Pan, C. leygraf and A. Delblanc-Bauer, “EIS and XPS Study of Surface Modification of 316LVM Stainless Steel After Passivation”, Corrosion Science, 41, p. 275-289, 1999
    66. M. A. Barbosa, A. Garrido and I. Sutherland, “The Surface Composition and Corrosion Behavior of AISI 304 Stainless Steel After Immersion in 20% HNO3 Solution“, Corrosion Science, 32(2), p. 179-184, 1991
    67. Y. S. Lim, J. S. Kim, S. J. Ahn, H. S. Kwon and Y. Katada, “The Influences of Microstructure and Nitrogen Alloying on Pitting Corrosion of Type 316L and 20 wt.% Mn-Substitued Type 316L Stainless Steels”, Corrosion Science, 43, p. 53-68, 2001
    68. D. J. Wever, A. G. Veldhuizen and H. J. Busscher, “Electrochemical and Surface Characterization of a Nickel-Titanium Alloy”, Biomaterials, 19, p. 761-769, 1998
    69. Q. Yang and J. L. Luo, ”The Hydrogen-Enhanced Effects of Chloride Ions on the Passivity of Type 304 Stainless Steel”, Electrochemical Acta, 45, p. 3927-3937, 2000
    70. A. John Sedriks, “Corrosion of Stainless Steels”, John Wiley & Sons, New York, chapter 4
    71. M. Z. Yang, Q. Yang and J. L. Luo, “Effects of Hydrogen on Passive Film and Corrosion of AISI 310 Stainless Steel“, Corrosion Science, 41, p. 741-745, 1999
    72. R. Nishimura, H. Habazaki and A. Kawashima, “The Effect of Hydrogen on the Passivity of Iron-Base and Nickel-Based Amorphous Alloys“, Materials Science and Engineering, A134, p. 1074-1077, 1991
    73. L. J. Qiao and J. L. Luo, “Hydrogen-Facilitated Anodic Dissolution of Austenitic Stainless Steel“, Corrosion, 54(4), p. 281-288, 1998
    74. M. Hasegawa and M. Osawa, “Anomalous Corrosion of Austenitic Stainless Steel Exposed to Hydrogen at High Temperature and Pressure“, Corrosion, 36(2), p. 67-73, 1980
    75. A. A. Seys, M. J. Brabers and A. A. Van Haute, “Analysis of the Influence of Hydrogen on Pitting Corrosion and Stress Corrosion of Austenitic Stainless Steel in Chloride Environment“, Corrosion, 30(2), p. 47-52, 1974
    76. M. E. Armacanqui and R. A. Oriani, “Effect of Hydrogen on the Pitting Resistance of Passivating Film on Nickel in Chloride-Containing“, Corrosion, 44, p. 696-698, 1988
    77. C. Lim, S. I. Pyun and R. A. Oriani, “The Role of Hydrogen in the Pitting of Passivation Films on Pure Iron“, Corrosion Science, 33(3), p. 437-444, 1992
    78. J. P. Moffa, Calif. Dent. Assoc. J., 12, p. 45, 1984
    79. International Agency for Research on Cancer, “ Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans”,(IARC, Lyon, France,1996)
    80. D. F. Williams, “Toxicology of Implanted Metals. Fundamental Aspects of Biocompability”, vol Ⅱ, CRC Series in Biocompatibility Boca Raton, FL: CRC Press; p. 45-61, 1981
    81. K. Takamura, K. Hayashi, N. Ishinishi, T. Yamada and Y. Sugioka, ”Evaluation of Carcinogenicity and Chronic Toxicity Associated with Orthopedic Implants in Mice”, Journal of Biomedical Materials Research, 28, p. 583-589, 1994
    82. J. C. Wataha, C. T. Hanks and R. G. Craig, “Uptake of Metal Cations by Fibroblasts In Vitro”, Journal of Biomedical Materials Research, 27, p. 227-232, 1993
    83. Z. L. Sun, J. C. Wataha and C. T. Hanks, “Effects of Metal Ion in Osteoblast-Like Cell Metabolism and Differentiation”, Journal of Biomedical Materials Research, 34, p. 29-37, 1997
    84. L. Peltonen, “Nickel Sensitivity in General Population”, Contact Dermatitis, 5, p. 27-32, 1979
    85. P. G. Laing, A. B. Ferguson and E. S. Hodge, “Tissue React with Rabbit Muscle Exposed to Metallic Implants”, Journal of Biomedical Research, 1, p. 135-149, 1967
    86. Okuyama M, et al., “Biocompatibility of Nickel-titanium Shape Memory Alloy: An In Vitro Electrochemical study”, Biomater Living Syst Int, 3, p. 145-160, 1995
    87. J. Ryhänen, E. Niemi, W. Serlo and P. Sandvik, ”Biocompatibility of Nickel-Titanium Shape Memory Metal and its Corrosion Behavior in Human Cell Cultures”, Journal of Biomedical Materials Research, 35, p. 451-457, 1997
    88. P. Haudrechy, B. Mantout, A. Frappaz, and D. Rousseau, “Nickel Release from Stainless Steels”, Contact Dermatitis, 37, p. 113-117, 1997
    89. P. W. Serruys, F. Kiemeneij and C. Macaya, “A Comparison of Balloon-Expandable Stent Implantation with Balloon Angioplasty in Patients with Coronary Artery Disease, Benestent Study Group”, The New England Journal of Medicine, 331, p. 489-495, 1994
    90. D. L. Fishchman, M. B. Leon, D. S. Baim, R. A. Schatz and M. P. Savage, ”A Randomized Comparison of Coronary Stent Placement and Balloon Angioplasty in the Treatment of Coronary Artery Disease, Stent Restenosis Study Investigators”, The New England Journal of Medicine, 331, p. 496-501, 1994
    91. N. A. Scott, K. A. Robinson, G. L. Nunes and C. N. Thomas, “Comparison of the Thrombogenicity of Stainless Steel and Tantalum Coronary Stents”, American Heart Journal, 129(5), p. 866-872, 1995
    92. A. Tárnok, A. Mahnke and M. Müller, “Rapid In Vitro Biocompatibility Assay of Endovascular Stents by Flow Cytometry Using Platelet Activation and Platelet-Leukocyte Aggregation”, Cytometry, 38, p. 30-39, 1999
    93. A. M. V. Berkel, J. V. Marle and H. V. Veen, “A Scanning Electron Microscopic Study of Biliary Stent Materials”, Gastrointestinal Endoscopy, 51(1), p. 19-22, 2000
    94. J. M. Seeger, M. D. Ingegno and E. Bigatan, “Hydrophilic Surface Modification of Metallic Endoluminal Stents”, Journal of Vascular Surgery, September, p. 327-336, 1995
    95. T. P. Cheng, W. T. Tsai and J. T. Lee, “Electrochemical and Corrosion Behaviour of Duplex Stainless Steel in Hank’s Solution”, Journal of Materials Science, 25, p. 936-943, 1990
    96. J. S. Noh, N. J. Laycock, W. Gao and D. B. Wells, “Effects of Nitric Acid Passivation on the Pitting Resistance of 316 Stainless Steel”, Corrosion Science, 42, p. 2069-2084, 2000
    97. J. A. Bardwell, B. Macdougall and M. J. Graham, “Use of 18O/SIMS and Electrochemical Techniques to Study the Reduction and Breakdown of Passive Oxide Films on Iron”, Electrochemical Society, 135(2), p. 413-418, 1988
    98. D. F. Mitchell, G. I. Sproule and M. J. Graham, “Measurement of Hydroxyl Ions in Thin Passive Oxide Films Using Secondary Ion Mass Spectrometry”, Application of Surface Science, 21, p. 199-209, 1985
    99. R. Nowak, P. Hess, H. Oetzmann and C. Schmidt, “XPS Characterization of Chromium Films Deposited from Cr(CO)6 at 248 nm”, Applied Surface Science, 43, p. 11-16, 1989
    100. V. I. Nefedov, D. Gati, B. F. Dzhurinskii and N. P. Sergushin, “Simple and Coordination Compounds. An X-ray Photoelectron Spectroscopic Study of Certain Oxides”, Russian Journal of Inorganic Chemistry, 20, p. 1279-1283, 1975
    101. P. Marcus and J. M. Grimal, “The Anodic Dissolution and Passivation of Ni-Cr-Fe Alloys Studied by ESCA”, Corrosion Science, 33(5), p. 805-814, 1992
    102. A. Galtayries and J. Grimblot, ”Formation and Electronic Properties of Oxide and Sulphide Films of Co, Ni and Mo Studied by XPS”, Journal of Electron Spectroscopy and Related Phenomena, 98-99, p. 267-275, 1999
    103. T. L. Barr, “An ESCA Study of Termination of the Passivation of Elemental Metals”, The Journal of Physical Chemistry, 82(16), p. 1801-1810, 1978
    104. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bombern and J. Chastain, “Handbook of X-ray Photoelectron Spectroscopy”, Perking-Elmer co., Eden Prairie, MN, 1992
    105. U. R. Evans, ”An Introduction to Metallic Corrosion”, London:Edward Arnold; 3 rd ed. 1981, chapter 2
    106. R. T. Dehoff, ”Thermodynamics in Materials Science”, Singapore: McGraw-Hill, Inc; 1993, chapter 11
    107. S. J. Rothman, L. J. Nowicki and G. E. Murch, “Self-diffusion in austenitic Fe-Cr-Ni alloys”, Journal of Physics F: Metal Physics, 10, p. 383-398, 1980
    108. J. G. Duh and M. A. Dayananda, “Interdiffusion in Fe-Ni-Cr Alloys at 1100℃”, Diffusion and Defect Data, 39, p. 1-50, 1985

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE