研究生: |
石皓瑋 Shih, Hao-Wei |
---|---|
論文名稱: |
Bi2Te3熱電元件的界面反應與相關材料系統相平衡 Interfacial reactions and phase equilibria of related material systems in the Bi2Te3 thermoelectric modules |
指導教授: |
陳信文
Chen, Sinn-Wen |
口試委員: |
衛子健
Wei, Tzu-Chien 陳志銘 Chen, Chih-Ming |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 173 |
中文關鍵詞: | 界面反應 、相圖 、銀-銅-銻 、熱電材料 |
外文關鍵詞: | Interfacial reaction, Phase diagram, Ag-Cu-Sb, Thermoelectric material |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究同時針對個別接點,搜尋整理文獻中界面反應與相關材料的相平衡資料。針對個別接點相關資料蒐集整理了Cu/Sn-Cu、Cu/Ag-Sb , Sn-Cu/Ni、Ag-Sb/Ni 及Ni/Bi2Te3。由於針對Cu/Sn-Cu、Sn-Cu/Ni與Ag-Sb/Ni三個系統,文獻中已有許多關於界面反應與相平衡的資料,因此不多加深入探討。由於目前並未有對於Cu/Ag-Sb 相關系統之討論,因此本文將針對此系統之界面反應及相平衡進行研究。同時因Cu與Ni能生成連續固溶體(Isomorphous system),為提供完整的了解,本研究亦將探討Cu/Bi2Te3及Ni/Bi2Te3接點的界面反應速率的比較與相平衡。因此共將針對Cu/Ag-Sb 、Cu/Bi2Te3 Ni/Bi2Te3反應偶進行實驗探討,數據結果則搭配文獻或實驗相圖輔助分析。
研究結果發現用電鍍法Cu/Bi2Te3偶於280°C熱處理進行固相/固相反應,會形成一介穩態的過飽和相Cux(Bi2Te3),此相於200°C及350°C均有出現,然而並未在Cu-Bi-Te相圖中觀察到。隨著時間的拉長,Cu和Te原子相互擴散形成Cu2-xTe相,Bi則以液態的形式在界面析出,大幅增加界面反應速率。Bi與Cux(Bi2Te3)過飽和相間又會形成由Bi與Bi2Te3分子相互排列的連續相 (Bi2)m(Bi2Te3)n,擴散路徑為Cu/Cu2-xTe/Bi/Bi2Te/Cux(Bi2Te3)/Bi2Te3,此反應下Cu為主要的擴散元素,相關元素相平衡分析則由現有文獻輔助分析。Ni/Bi2Te3擴散偶由電鍍法製備於280°C熱處理,則會形成NiTe2-x相及(Bi)m(Bi2Te3)n相,擴散路徑為Ni/NiTe2-x/(Bi)m(Bi2Te3)n,此反應下Te為主要擴散元素,相關元素相平衡分析則由現有文獻輔助分析。Cu/Ag-41at.%Sb 共晶銲料由電鍍法製備反應偶於300°C、500°C溫度下反應。反應在300°C下會形成明顯的Cu2Sb反應層及疏Sb的Ag3Sb-Sb兩相區,擴散路徑為Cu/Cu2Sb/Ag3Sb-Sb;在500°C下則會形成不穩定的Cu3Sb相與其分解相,以及液態冷卻形成的Cu2Sb及Ag3Sb共晶結構,擴散路徑為Cu/Cu3Sb/Cu2Sb-Ag3Sb/Ag3Sb-Sb,Sb為主要擴散元素。Ag-Cu-Sb系統之等溫恆截面相圖於300°C及500°C,則由配置不同比例合金,待其回火7至30天後取出分析而得。在300°C下6個三相區中,確立了三個相區Cu-Ag-Cu78Sb20、Cu10Sb3-Cu2Sb-Ag、Ag3Sb-Cu2Sb-Sb,而Ag-Cu78Sb20-Cu10Sb3、Ag-Ag7Sb-Cu2Sb、Ag7Sb-Ag3Sb-Cu2Sb則由觀察到的兩相區建立。在500°C下6個三相區中,確立了Ag3Sb-Sb-Liquid、 Cu-Cu3Sb-Liquid、Ag-Cu-Liquid、Ag7Sb+Ag3Sb+Liquid、Ag+Ag7Sb+Liquid、Cu3Sb+Cu2Sb+Liquid共6個三相區的存在,同時藉由兩相區的組成比例,建立出500°C下的液態相區邊界。Ag-Cu-Sb系統之二元化合物均對第三元元素無明顯溶解度,其中二元化合物中Ag7Sb對Cu的最大溶解度為4.73 at.%。
This study intends to systematically explore the phase equilibrium of the joints in the Bi2Te3 thermoelectric elements and the phase balance of the related material systems to provide a complete basic knowledge of Bi2Te3 thermoelectric elements. This study aims at individual joints, searching for the phase equilibrium data of interface reactions and related materials in the literature. The joints included in this reference review are Cu/Sn-Cu, Cu/Ag-41at.%Sb , Sn-Cu/Ni, Ag-Sb/Ni and Ni/Bi2Te3. For the Cu/Sn-Cu, Sn-Cu/Ni and Ag-Sb/Ni systems. There are many data on the interface reactions and the phase equilibrium in the literature. Therefore, this study is focused on Cu/Ag-41at.%Sb interfacial reaction and phase equilibrium. In addition, because Cu is a common solder alloy composition and electrode material, and Cu and Ni can form a complete solid solution, in order to provide a complete understanding, this study will also compare the interfacial reaction between Cu/Bi2Te3 and Ni/Bi2Te3. In this study, three systems, Cu/Ag-41at.%Sb, Cu/Bi2Te3, Ni/Bi2Te3, were investigated.
It was found that Cu/Bi2Te3 prepared by electroplating method was heat-treated at 280 °C for solid/solid phase reaction, which formed an unknown phase and did not appear in the Cu-Bi-Te ternary phase diagram. The literature was reported at 200 ° C and at 350 °C, it is judged that the saturated phase of Cu dissolved in Bi2Te3 is named Cux(Bi2Te3). For longer reaction time, liquid bismuth is participated because of the formation of Cu2-xTe. This liquid layer boosts the reaction rate. Besides, Bi layer and Cux(Bi2Te3) react to each other and form (Bi)m(Bi2Te3)n series phase stacking by Bi and Bi2Te3 molecules. The diffusion path is Cu/Cu2-xTe/Bi/Bi2Te/Cux(Bi2Te3)/Bi2Te3. Cu is the main reaction in this reaction. The related phase equilibrium refers to the recent development. Ni/Bi2Te3 diffusion couple prepared by electroplating method was heat-treated at 280 °C for solid/solid phase reaction. It forms NiTe2-x phase and (Bi)m(Bi2Te3)n phase. The diffusion path is Ni/NiTe2-x/(Bi)m(Bi2Te3)n. Telluride is the domain element in the reaction. The related phase equilibrium refers to the recent development. Cu/Ag-41at.%Sb eutectic alloy prepared by electroplating method was heat-treated at 300°C and 500°C for solid/solid reaction. It was found that this system will form a flat Cu2Sb layer and the Ag3Sb-Sb binary area which Sb is depleted at 300°C. The diffusion path is Cu/Cu2Sb/Ag3Sb-Sb. At 500°C, the unstable phase Cu3Sb and its decomposed phase can be observed, and also it can find that a eutectic structure which consists with Cu2Sb and Ag3Sb. The diffusion path is Cu/Cu3Sb/Cu2Sb-Ag3Sb/Ag3Sb-Sb. Sb would be the major diffusion element. The isothermal phase diagram of Ag-Cu-Sb at 300°C and 500°C were determined by the homogeneous sample annealed for 7 to 30 days. The three phase regions which are Cu-Ag-Cu78Sb20、Cu10Sb3-Cu2Sb-Ag、Ag3Sb-Cu2Sb-Sb have been observed at 300°C, and the others three phase regions which are Ag-Cu78Sb20-Cu10Sb3、Ag-Ag7Sb-Cu2Sb、Ag7Sb-Ag3Sb-Cu2Sb are established by related two phase regions. At 500°C, six three phase regions have been observed which are Ag-Cu-Liquid、Cu-Cu3Sb-Liquid、Cu3Sb-Cu2Sb-Liquid、Cu2Sb、Sb-Liquid、Ag3Sb-Ag7Sb-Liquid、Ag-Ag7Sb-Liquid. The boundary of liquid phase region is established by the tie-line in two phase regions. It is found that all the ternary solubilities in the binary compounds in the Ag-Cu-Sb system are not significant. The highest is 4.73at. % Cu in the Ag7Sb compound.
[1] "Global Energy & CO2 Status Report." IEA. https://www.iea.org/geco/data/ .
[2] C. Forman, I. K. Muritala, R. Pardemann, and B. Meyer, "Estimating the global waste heat potential," Renewable and Sustainable Energy Reviews, vol. 57, pp. 1568-1579, 2016/05/01.
[3] A. Polozine, S. Sirotinskaya, and L. Schaeffer, "History of development of thermoelectric materials for electric power generation and criteria of their quality," Materials Research, vol. 17, pp. 1260-1267, 2014.
[4] 黃振東、徐振庭. (2013) 熱電材料. 科學發展 486期. 48-53.
[5] 葉建弦博士. "熱電材料特性研究與相關應用." ACTTR. http://www.acttr.com/tw/tw-report/tw-report-technology/238-tw-tech-thermoelectric-research-application.html .
[6] M. S. El-Genk, H. H. Saber, and T. Caillat, "Efficient segmented thermoelectric unicouples for space power applications," Energy Conversion and Management, vol. 44, no. 11, pp. 1755-1772, 2003/07/01.
[7] J. H. Westbrook and R. L. Fleischer, Intermetallic compounds. Wiley New York, 1967.
[8] R. W. Cahn, Physical metallurgy. Elsevier, 1996.
[9] J. B. Maclachlan, W. H. Kruesi, and D. J. Fray, "Intercalation of copper into bismuth telluride," Journal of Materials Science, journal article vol. 27, no. 15, pp. 4223-4229, August 01 1992.
[10] S. Ye, J.-D. Hwang, and C.-M. Chen, "Strong Anisotropic Effects of p-Type Bi2Te3 Element on the Bi2Te3/Sn Interfacial Reactions," Metallurgical and Materials Transactions A, vol. 46, no. 6, pp. 2372-2375, 2015/06/01.
[11] U. R. Kattner, "The thermodynamic modeling of multicomponent phase equilibria," JOM, journal article vol. 49, no. 12, pp. 14-19, December 01 1997.
[12] Binary Alloy Phase Diagrams, II Ed., Ed. T.B. Massalski,1990,2,,1490-1492,Subramanian P.R. .
[13] R. E. Reed-Hill, R. Abbaschian, and R. Abbaschian, "Physical metallurgy principles," 1973.
[14] R. A. Gagliano and M. E. Fine, "Thickening kinetics of interfacial Cu6Sn5 and Cu3Sn layers during reaction of liquid tin with solid copper," J. Electron. Mater., journal article vol. 32, no. 12, pp. 1441-1447, December 01 2003.
[15] 王朝弘, "Phase equilibra of the ternary Al-Cu-Ni system and the ternary Sn-Cu-Ni system at 800℃ and their related interfacial reactions." 國立清華大學, 2002.
[16] 陳令婕, "PbTe熱電元件中Ag-Sb接點介面反應與Ag-Ni-Sb三元系統相圖," 國立清華大學, 2016.
[17] H. Ghoumaribouanani, G. Brun, B. Liautard, and J. C. Tedenac, "PHASE-EQUILIBRIA IN A COPPER TELLURIDE PLUS BISMUTH TELLURIDE SYSTEM," (in French), Mater. Res. Bull., Article vol. 28, no. 9, pp. 901-908, Sep 1993.
[18] 王暐, "Cu/Bi2Te3與Ni/Bi2Te3界面反應及Bi-Cu-Te與Bi-Ni-Te相圖," 國立清華大學, 2018.
[19] Y.-C. Tseng, H. Lee, N. Y. Hau, S.-P. Feng, and C.-M. Chen, "Electrodeposition of Ni on Bi2Te3 and Interfacial Reaction Between Sn and Ni-Coated Bi2Te3," J. Electron. Mater., journal article vol. 47, no. 1, pp. 27-34, January 01 2018.
[20] L.-C. Lo and A. T. Wu, "Interfacial Reactions Between Diffusion Barriers and Thermoelectric Materials Under Current Stressing," J. Electron. Mater., vol. 41, no. 12, pp. 3325-3330, 2012/12/01 2012.
[21] 劉姿彣, "Bi2Te3基熱電模組之界面反應," 國立清華大學, 2016.
[22] R. Blachnik, M. Lasocka, and U. Walbrecht, "The system copper-tellurium," Journal of Solid State Chemistry, vol. 48, no. 3, pp. 431-438, 1983/07/15.
[23] A. S. Pashinkin and V. A. Fedorov, "Phase equilibria in the Cu-Te system," (in English), Inorg. Mater., Article vol. 39, no. 6, pp. 539-554, Jun 2003.
[24] H. Okamoto, Phase Diagrams for Binary Alloys, 2nd ed. ASM International.
[25] O. Teppo, J. Niemelä, and P. Taskinen, "An assessment of the thermodynamic properties and phase diagram of the system Bi-Cu," Thermochimica Acta, vol. 173, pp. 137-150, 1990/12/27.
[26] L. S. Chang, B. B. Straumal, E. Rabkin, W. Gust, and F. Sommer, "The Solidus Line of the Cu-Bi Phase Diagram," Journal of Phase Equilibria, journal article vol. 18, no. 2, p. 128, April 01 1997.
[27] J. Niemelä, G. Effenberg, K. Hack, and P. J. Spencer, "A thermodynamic evaluation of the Copper — Bismuth and Copper — Lead systems," Calphad, vol. 10, no. 1, pp. 77-89, 1986/01/01.
[28] L. Elford, F. Müller, and O. Kubaschewski, "The thermodynamic properties of copper-nickel alloys," Berichte der Bunsengesellschaft für physikalische Chemie, vol. 73, no. 6, pp. 601-605, 1969.
[29] H. O. T.B. Massalski, Binary Alloy Phase Diagrams, 2nd Edition. ASM International, 1990.
[30] E. Uchida and H. Kondoh, "Magnetic Properties of Nickel Telluride," Journal of the Physical Society of Japan, vol. 11, no. 1, pp. 21-27, 1956/01/15.
[31] E. F. W. Jr. and R. E. Machol, "Thermodynamics of Nonstoichiometric Nickel Tellurides. II. Dissociation Pressures and Phase Relations of Tellurium‐Rich Compositions," The Journal of Chemical Physics, vol. 29, no. 4, pp. 824-828, 1958.
[32] M. Ettenberg, K. L. Komarek, and E. Miller, "Thermodynamic properties of nickel-tellurium alloys," Journal of Solid State Chemistry, vol. 1, no. 3, pp. 583-592, 1970/04/01.
[33] C. M. Arvhult, C. Gueneau, S. Gosse, and M. Selleby, "Thermodynamic assessment of the Ni-Te system," (in English), Journal of Materials Science, Article vol. 54, no. 16, pp. 11304-11319, Aug 2019.
[34] J. Wang, F.-g. Meng, L.-b. Liu, and Z.-p. Jin, "Thermodynamic optimization of Bi-Ni binary system," Transactions of Nonferrous Metals Society of China, vol. 21, no. 1, pp. 139-145, 2011/01/01.
[35] S. K. Seo, M. G. Cho, and H. M. Lee, "Thermodynamic assessment of the Ni-Bi binary system and phase equilibria of the Sn-Bi-Ni ternary system," (in English), J. Electron. Mater., Article; Proceedings Paper vol. 36, no. 11, pp. 1536-1544, Nov 2007.
[36] G. P. Vassilev, X. J. Liu, and K. Ishida, "Experimental studies and thermodynamic optimization of the Ni-Bi system," (in English), J. Phase Equilib. Diffus., Article vol. 26, no. 2, pp. 161-168, Apr 2005.
[37] P. Feschotte and J. M. Rosset, "Equilibres de phases dans le systeme binaire nickel-bismuth," Journal of the Less Common Metals, vol. 143, no. 1, pp. 31-37, 1988/10/01.
[38] J. W. G. Bos, H. W. Zandbergen, M. H. Lee, N. P. Ong, and R. J. Cava, "Structures and thermoelectric properties of the infinitely adaptive series (Bi2)n(Bi2Te3)m," Physical Review B, vol. 75, no. 19, p. 195203, 05/07/ 2007.
[39] C. Mao, M. Y. Tan, L. G. Zhang, D. Wu, W. M. Bai, and L. B. Liu, "Experimental reinvestigation and thermodynamic description of Bi-Te binary system," (in English), Calphad-Comput. Coupling Ph. Diagrams Thermochem., Article vol. 60, pp. 81-89, Mar 2018.
[40] P. R. Subramanian and J. H. Perepezko, "The ag-cu (silver-copper) system," Journal of Phase Equilibria, journal article vol. 14, no. 1, pp. 62-75, February 01 1993.
[41] S.-w. Chen et al., "Phase equilibria of Sn–Sb–Cu system," Materials Chemistry and Physics, vol. 132, no. 2, pp. 703-715, 2012/02/15.
[42] W. Gierlotka and D. Jendrzejczyk-Handzlik, "Thermodynamic description of the Cu–Sb binary system," Journal of Alloys and Compounds, vol. 484, no. 1, pp. 172-176, 2009/09/18.
[43] X. J. Liu, C. P. Wang, I. Ohnuma, R. Kainuma, and K. Ishida, "Thermodynamic assessment of the phase diagrams of the Cu-Sb and Sb-Zn systems," Journal of Phase Equilibria, journal article vol. 21, no. 5, p. 432, September 01 2000.
[44] S. Fürtauer and H. Flandorfer, "A new experimental phase diagram investigation of Cu–Sb," Monatshefte für Chemie - Chemical Monthly, journal article vol. 143, no. 9, pp. 1275-1287, September 01 2012.
[45] S. Yamaguchi and M. Hirabayashi, "Long Period Superstructures with Hexagonal Symmetry in the Cu-Sb Alloys near 20 at.% Sb," Journal of the Physical Society of Japan, vol. 33, no. 3, pp. 708-717, 1972/09/15 1972.
[46] C.-S. Oh, J.-H. Shim, B.-J. Lee, and L. Dong Nyung, "A thermodynamic study on the AgSbSn system," Journal of Alloys and Compounds, vol. 238, no. 1, pp. 155-166, 1996/05/01/ 1996.
[47] E. Zoro, C. Servant, and B. Legendre, "Thermodynamic assessment of the Ag-Au-Bi and Ag-Au-Sb systems," Journal of Thermal Analysis and Calorimetry, journal article vol. 90, no. 2, pp. 347-353, November 01 2007.
[48] J. Dutkiewicz and T. B. Massalski, "Search for metallic glasses at eutectic compositions in the Ag-Cu-Ge, Ag-Cu-Sb and Ag-Cu-Sb-Ge systems," Metallurgical Transactions A, journal article vol. 12, no. 5, pp. 773-778, May 01 1981.
[49] W. Zhai, B. J. Wang, L. Hu, and B. B. Wei, "Ternary eutectic growth during directional solidification of Ag-Cu-Sb alloy," (in English), Philos. Mag. Lett., Article vol. 95, no. 4, pp. 187-193, Apr 2015.
[50] X. J. Liu, X. F. Yang, S. Y. Yang, and C. P. Wang, "Experimental Determination of Phase Equilibria in the Ag-Cu-Sb Ternary System," (in English), J. Phase Equilib. Diffus., Article vol. 36, no. 5, pp. 503-509, Oct 2015.
[51] F. Gao, C. Wang, X. J. Liu, Y. Takaku, I. Ohnuma, and K. Ishida, "Experimental investigation and thermodynamic calculation in the Ag–Bi–Ni and Cu–Bi–Ni systems," Journal of Materials Research, vol. 24, no. 8, pp. 2644-2653.
[52] B. Marković et al., "Experimental study and thermodynamic remodeling of the Bi–Cu–Ni system," Calphad, vol. 34, no. 3, pp. 294-300, 2010/09/01.
[53] H.-J. Wu and W.-T. Yen, "High thermoelectric performance in Cu-doped Bi2Te3 with carrier-type transition," Acta Materialia, vol. 157, pp. 33-41, 2018/09/15.
[54] F. Debbagh, H. Mohssine, E. L. Ameziane, M. Azizan, and M. Brunel, "PHYSICAL AND CHEMICAL-ANALYSIS OF RF-SPUTTERED CU/TE/CDTE STRUCTURES," (in English), Sol. Energy Mater. Sol. Cells, Article vol. 31, no. 1, pp. 1-8, Oct 1993.
[55] M. Baricco, M. Palumbo, D. Baldissin, E. Bosco, and L. Battezzati, "Metastable phases and phase diagrams," La Metallurgia Italiana, no. 11.
[56] S. W. Chen, H. J. Wu, C. Y. Wu, C. F. Chang, and C. Y. Chen, "Reaction evolution and alternating layer formation in Sn/(Bi0.25Sb0.75)(2)Te-3 and Sn/Sb2Te3 couples," (in English), Journal of Alloys and Compounds, Article vol. 553, pp. 106-112, Mar 2013.