研究生: |
林志雄 Lin, Chih-Hsiung |
---|---|
論文名稱: |
多元合金氮化物之微結構、機械性質、高溫氧化行為以及抗腐蝕特性研究 Microstructure Evolution, Mechanical Properties, Oxidation Behavior and Corrosion Resistance of Multi-component Nitride Coatings |
指導教授: |
杜正恭
Duh, Jenq-Gong |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 126 |
中文關鍵詞: | 多元合金氮化物 、射頻磁控濺鍍 、奈米壓痕 、奈米複合材 、交流阻抗儀 |
外文關鍵詞: | Multicomponent Coating, RF sputter, Nanoindentation, Nanocomposite, AC impedance |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面工程技術是藉由表面改質或是表面鍍膜來保護工件、延長使用壽命、降低生產成本以及擴展應用領域。而硬質鍍膜由於具有高強度、抗氧化、抗腐蝕、耐磨耗等機械特性,可廣泛使用在各種工業領域,例如切削刀具保護層以及包含手機、筆記型電腦等3C產品的裝飾鍍層等。本研究先試以新穎之鈦鋁鉻矽釩高熵合金作為磁控濺鍍靶材,藉由反應性氮氣流量的調變可製備出各式不同氮含量的氮化物。在微結構鑑定中可發現,氮化鈦鋁鉻矽釩展現出其因多元而特有的奈米晶結構,達計量比的多元氮化物其硬度在製程中施加偏壓後可達到36 GPa,大幅優於傳統的二元或三元氮化物。在耐蝕性的測試中發現,多元的鈦鋁鉻矽釩雖然硬度較低,但其非晶態結構在作為硬質氮化物的中間層時,能有效阻止電解液的滲透,並使多元氮化物成長得更為緻密,有效提升薄膜的抗腐蝕特性。然而藉由電子顯微鏡的相鑑定後發現,在超過700 oC的大氣環境下,二氧化鈦以及四氧化鉻釩的生成將破壞此多元氮化膜原本緻密的結構。為了同時使多元薄膜兼具良好的耐蝕性以及高溫抗氧化性,在後期研究中嘗試以去除鈦、釩的鉻鋁合金作為靶材,與矽靶進行氮化鉻鋁之共鍍,由微結構分析中發現矽添加有促進薄膜非晶化的效果,藉由非晶態氮化矽的生成可有效地將薄膜的柱狀晶結構轉變為緊密的等軸晶結構,具備奈米複合材結構的氮化鉻鋁除了具有超過30 GPa的高硬度外,其細緻的微結構亦使得薄膜具有優良的抗腐蝕特性。
Surface modification engineering is the technology to deposit a foreign material onto the surface of interest to improve specific desired properties. This study aimed to develop a new multi-component material as a protective coating, which would enhance the surface strength, thermal stability, and corrosion resistance of the tool steels. The multi-component (TiAlCrSiV)xNy coatings were fabricated by utilizing a high entropy alloy (HEA) target in RF magnetron sputtering. Through hardness measurements, wear tests, heat treatments, and corrosion tests, effect of each additional element in harsh environments was evaluated. The multi-component (TiAlCrSiV)xNy nitrides (denoted as MCN in the following text) exhibited a f.c.c. crystallined structure and an enhanced hardness as high as 36.4 GPa. According to the XRD patterns and TEM analyses, the improved mechanical properties were attributed to their nano-crystalline structures. After a heat treatment at 600 oC in air, a mixed amorphous oxide layer formed on the surface of MCN coating and protected the coating from further oxygen attack. Subsequently, the formations of CrVO4 and TiO2 were verified after annealing the coating at 700 oC in air. The outward diffusion of Ti, revealed by EDS quantitative data, implied that these crystalline oxides no longer acted as a protection and serious oxidation occurred from this temperature. Due to the absence of self-lubricating V2O5 oxide, the reduced friction coefficient was only found in the as-deposited MCN coatings. Although addition of Ti and V was disfavored in consideration of oxidation, the multi-component TiAlCrSiV coating (denoted as MC in the following text) revealed its amorphous nature as well as good corrosion resistance against NaCl solution. Being a metallic interlayer between coating and steel substrates, it also greatly improved the polarization resistance of the steel/MC/MCN sample. Hence, the coated tools could reveal both enhanced surface hardness and improved corrosion resistance.
Concerning about both oxidation and corrosion resistance, Ti and V were removed in the parallel study, and the amorphization was achieved by adjusting the Si content of the modified coating. The nanocomposite structure of the modified CrAlSiN coating was investigated by TEM techniques, and the grain refinement by adding Si was verified. It was found that the columnar structure of CrAlN coating could be altered to a compact one after Si addition, and the polarization resistance of the coated sample was thus improved. Therefore, the CrAlSiN coating with high hardness, good thermal stability and corrosion resistance was suggested as a potential candidate coating for tool steels.
1. R. Melley, P. Wissner, “The real costs of lubrication”, 99th AGM-CIM (1997), Canada
2. M. G. Fontana, “Corrosion Engineering”, 3rd ed., McGraw-Hill, New York, (1986) p. 1-5
3. M. Bin-Sudin, A. Leyland, A. S. James, A. Matthews, J. Housden, B. Garside, “XPS in the study of high-temperature oxidation of CrN and TiN hard coatings,” Surf. Coat. Technol. 74-75, (1995) 897
4. H. Ichimura and A. Kawana, “High temperature oxidation of ion-plated CrN films,” J. Mater. Res. 9, (1994) 151
5. J. N. Tu, J. G. Duh and S. Y. Tsai, “Morphology, mechanical properties, and oxidation behavior of reactively sputtered Cr–N films,” Surf. Coat. Technol. 133-134, (2000) 181
6. D. Mcintyre, J.E. Greene, G. Håkansson, J.-E. Sundgren, W.-D. Münz, “Oxidaiton of metastable single-phase polycrystalline Ti0.5Al0.5N films-kinetics and mechanisms”, J. Appl. Phys. 67 (1990) 154
7. A.N. Kale, K. Ravindranath, D.C. Kothari, P.M. Roale, “Tribological properties of (Ti,Al)N coatings deposited at different bias voltages using the cathodic arc technique”, Surf. Coat. Technol. 145 (2001) 60
8. S. PalDey, S.C. Deevi, "Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review" Mater. Sci. Eng. A-Struct. 342 (2003) 58
9. A. Hörling, L. Hultman, M. Odén, J. Sjölé, L. Karlsson, “Mechanical properties and machining performance of Ti1-xAlxN-coated cutting tools”, Surf. Coat. Technol. 191 (2005) 384
10. O. Banakh, P.E. Schmid, R. Sanjinés, F. Lévy, “High-temperature oxidation resistance of Cr1-xAlxN thin films deposited by reactive magnetron sputtering”, Surf. Coat. Technol. 163-164 (2003) 57
11. R. Wuhrer, W.Y. Yeung, “A comparative study of magnetron co-sputtered nanocrystalline titanium aluminium and chromium aluminium nitride coatings”, Scripta Mater. 50 (2004) 1461
12. H. Willmann, P.H. Mayrhofer, P.O.A. Persson, A.E. Reiter, L. Hultman, C. Mitterer, “Thermal stability of Al-Cr-N hard coatings”, Scrip. Mater. 54 (2006) 1847
13. Z. Zhou, W.M. Rainforth, D.B. Lewis, S. Creasy, J.J. Forsyth, F. Clegg, A.P. Ehiasarian, P.Eh. Hovespian, W.-D. Münz, “Oxidation behaviour of nanoscale TiAlN/VN multilayer coatings”, Surf. Coat. Technol. 177-178 (2004) 198
14. D.B. Lewis, S. Creasey, Z. Zhou, J.J. Forsyth, A.P. Ehiasarian, P.Eh. Hovsepian, Q. Luo, W.M. Rainforth , W.-D. Münz, “The effect of (Ti+Al):V ratio on the structure and oxidation behaviour of TiAlN/VN nano-scale multilayer coatings”, Surf. Coat. Technol. 177-178 (2004) 252
15. P.H. Mayrhofer, P.Eh. Hovsepian, C. Mitterer, W.-D. Münz, “Calorimetric evidence for frictional self-adaptation of TiAlN/VN superlattice coatings”, Surf. Coat. Technol. 177-178 (2004) 341
16. K. Kutschej, P.H. Mayrhofer, M. Kathrein, P. Polcik, C. Mitterer, “A new low-friction concept for Ti1-xAlxN based coatings in high-temperature applications”, Surf. Coat. Technol. 188-189 (2004) 358
17. S. Veprek, M. Haussmann, S. Reiprich, S. Z. Li and J. Dian, “Novel thermodynamically stable and oxidation resistant superhard coating materials“, Surface and Coatings Technology 86-87, (1996) 294
18. J.H. Park, W.S. Chung, Y.R. Cho, K.H. Kim, “Synthesis and mechanical properties of Cr–Si–N coatings deposited by a hybrid system of arc ion plating and sputtering techniques”, Surf. Coat. Technol. 188-189 (2004) 425
19. S. Veprek, A.S. Argon, R.F. Zhang, “Origin of the hardness enhancement in superhard nc-TiN/a-Si3N4 and ultrahard nc-TiN/a-Si3N4/TiSi2 nanocomposites”, Phil. Mag. Lett. 87 (2007) 955
20. R.F. Zhang, S.H. Sheng, S. Veprek, “Mechanical strengths of silicon nitrides studied by ab initio calculations”, Appl. Phys. Lett. 90 (2007) 191903
21. S.Q. Hao, S.B. Delley, S. Veprek, C. Stampfl, “Superhard nitride-based nanocomposites: Role of interfaces and effect of impurities”, Phys. Rev. Lett. 97 (2006) 086102
22. S. Veprek, “The search for novel, superhard materials”, J. Vac. Sci. Technol., A, Vac. Surf. Films 17 (1999) 2401
23. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, “Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes”, Adv. Eng. Mater. 6 (5) (2004) 299
24. P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, “Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating”, Adv. Eng. Mater. 6 (1-2) (2004) 74
25. B. Bhushan, “Overview of coating materials, surface treatments and screening techniques for tribological applications Part I: Coating materials and surface treatments”, Testing of Metallic and Inorganic Coatings (W.B. Harding and G.A. DiBari, eds.), special Publication STP 947, 289-309, (1987), ASTM, Philadelphia, PA. USA.
26. D. S. Rickerby and A. Matthews, “Advanced Surface Coatings: a handbook of surface engineering”, Glasgow, Blackie, (1991).
27. Y. Chiba, T. Omura, and H. Ichimura, “Wear Resistance of Arc Ion-Plated Chromium Nitride Coatings”, J. Mater. Res., 8 (1993) 1109-1115
28. H. Holleck, and V. Schier, ”Multilayer PVD Coatings for Wear Protection”, Surf. Coat. Technol., 76-77 (1995) 328
29. H. Hellock, "Material Selection for Hard Coatings" J. Vac. Sci. Technol., A4(6) (1986) 2661-2669.
30. R. Behrisch Ed., "Sputtering by particle bombardment," Applied Physics, 47, Berlin, Springer (1981).
31. P. D. Toensend, and J. C. Kelly, “Ion implantation: Sputtering and their applications,” Academic Press, (1976).
32. M. Ohring Ed., “The materials science of thin films,” Academic Press, London, UK, (1992) Chap.3 123-124.
33. H.A. Jehn, S. Hofmann, V.E. Rückborn, W.D. Münz, “Morphology and properties of sputtered (Ti, Al)N layers on high-speed steel substrate as a function of deposition temperature and sputtering atmosphere”, J. Vac. Sci. Technol. A4(6) (1986) 2701
34. L.A. Donohue, W.D. Münz, D.B. Lewis, J. Cawley, T. Hurkmans, T. Trinh, I. Petrov, J.E. Greene, “Large-scale fabrication of hard superlattice thin films by combined steered arc evaporation and unbalanced magnetron sputtering”, Surf. Coat. Technol. 93 (1997) 69
35. P.C. Jindal, A.T. Santhanam, U. Schleinkofer, A.F. Shuster, “Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning”, Int. J. Refract. Met. Hard Mat. 17 (1999) 163
36. H.G. Prengel, A.T. Santhanam, R.M. Penich, P.C. Jindal, K.H. Wendt, “Advanced PVD-TiAlN coatings on carbide and cermet cutting tools”, Surf. Coat. Technol. 94-95 (1997) 597
37. M. Zhou, Y. Makino, M. Nose, K. Nogi, “Phase transition and properties of Ti-Al-N thin films prepared by rf-plasma assisted magnetron sputtering”, Thin Solid Films 339 (1999) 203
38. M. Bin-Sudin, A. Leyland, A. S. James, A. Matthews, J. Housden, B. Garside, “XPS in the study of high-temperature oxidation of CrN and TiN hard coatings,” Surf. Coat. Technol. 74-75 (1995) 897
39. H. L. Bai, Z. J. He, W. B. Mi, P. Wu, Z. Q. Li, E.Y. Jiang, “Dual facing target sputtered amorphous CoMoN/CN compound soft X-ray multilayer: structures and thermal stability,” Appl. Phys. A77 (2003) 533
40. H. L. Bai, E. Y. Jiang, P. Wu, Z. D. Lou, Y. Wang, C. D. Wang, “Characterization of heat-treated CN films fabricated by dual-facing-target sputtering for soft X-ray multilayer mirrors,“ Appl. Phys. A 69 (1999) 641
41. H. Ichimura and A. Kawana, “High temperature oxidation of ion-plated TiN and TiAlN films,” J. Mater. Res. 8 (1996) 1093
42. Michael Mack, ”Surface Technology”, published by verlag moderne industrie AG & Co, Germany (1990).
43. “Phase Equilibria Diagrams: Phase Diagrams for Ceramists: Vol.10. Borides, Carbides, and Nitrides,” A.E. McHale (Ed.), The American Ceramic Society, Westerville, OH, 1994, p.415
44. B. Navinšek, P.Panjan, I. Milošev, “PVD Coatings as an Environmentally Clean Alternative to Electroplating and Electroless Processes,” Surf. Coat. Technol. 116-119 (1999) 476
45. B.Navinšek, P. Panjan, J. Krušič, “Hard Coatings on Soft Metallic Substrates”, Surf. Coat. Technol. 98 (1998) 809
46. K. T. Liu, J. G. Duh, K. H. Chung, J. H. Wang “Mechanical Characteristics and Corrosion Behavior of (Ti,Al)N Coatngs on Dental Alloys,” Surf. Coat. Technol., 200 (2005) 2100
47. Y. Makino, “Prediction of phase change in pseudobinary transition metal aluminum nitrides by band parameters method”, Surf. Coat. Technol. 193 (2005) 185
48. A. E. Reiter, V. H. Derflinger, B. Hanselmann, T. Bachmann, and B. Sartory, “Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation,“ Surf. Coat. Technol. 200 (2005) 2114
49. W. Kalss, A. Reiter, V. Derflinger, C. Gey, J. L. Endrino, ”Modern coatings in high performance cutting applications”, Int. J. Refract. Met. Hard Mat. 24 (2006) 399
50. S.Q. Hao, B. Delley, C. Stampfl, “Role of oxygen in TiN(111)/SixNy/TiN(111) interfaces: Implications for superhard nanocrystalline nc-TiN/a-Si3N4 nanocomposites”, Phys. Rev., B 74 (2006) 035424
51. S. Veprek, S. Reiprich, “A concept for the design of novel superhard coatings”, Thin Solid Films 268 (1995) 64.
52. S. Veprek, M. Haussmann, S. Reiprich, “Superhard nanocrystalline W2N/amorphous Si3N4 composite materials”, J. Vac. Sci. Technol., A, Vac. Surf. Films 14 (1996) 46.
53. S. Veprek, A.S. Argon, “Towards the understanding of mechanical properties of super- and ultrahard nanocomposites”, J. Vac. Sci. Technol., B 20 (2002) 650.
54. S. Veprek, S. Mukherjee, P. Karvankova, H.-D. M7nnling, J.L. He, K. Moto, J. Prochazka, A.S. Argon, “Limits to the strength of super- and ultrahard nanocomposite coatings”, J. Vac. Sci. Technol., A21 (2003) 532.
55. S. Christiansen, M. Albrecht, H.P. Strunk, S. Veprek, “Microstructure of novel superhard nanocrystalline amorphous composites as analyzed by high resolution transmission electron microscopy”, J. Vac. Sci. Technol., B16 (1998) 19
56. S. Veprek, M.G.J. Veprek-Heijman, P. Karvankova, J. Prochazka, “Review:Different approaches to superhard coatings and nanocomposites” Thin Solid Film 476 (2005) 1-29
57. J. Prochazka, P. Karvankova, M.G.J. Veprek-Heijman, S. Veprek, “Conditions required for achieving superhardness of ≧ 45 GPa in nc-TiN/a-Si3N4 nanocomposites”, Mater. Sci. Eng. 384 (2004) 102
58. D.A. Porter, K.E. Easterling, “Phase Transformation in Metals and Alloys” 2nd. Ed.Nelson Thornes Ltd, Cheltenham, 2001
59. R.F. Zhang, S. Veprek, “On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti-Si-N system” Mater. Sci. Eng. A424 (2006) 128
60. S. Veprek, M.G.J. Veprek-Heijman, “The formation and role of interface in superhard nc-MenN/a-Si3N4 nanocomposite” Surf. Coat. Technol. 201 (2007) 6064
61. R.F. Zhang, S. Veprek, “Phase stabilities of self-organized nc-TiN/a-Si3N4 nanocomposites and of Ti1-xSixNy solid solutions studied by ab initio calculation and thermodynamic modeling” Thin Solid Film 516 (2008) 2264
62. S. Veprek, P. Karvankova, M.G.J. Veprek-Heijman, “Possible role of oxygen impurities in degradation of nc-TiN/a-Si3N4 nanocomposites”, J. Vac. Soc. Technol. B23(6) (2005) L17
63. S. Veprek, H.-D. Männling, A. Niederhofer, D. Ma, S. Mukherjee, “Degradation of superhard nanocomposites by built-in impurities”, J. Vac. Sci. Technol. B 22, L5 (2004)
64. D. G. Kim, T. Y. Seong and Y. J. Baik, “Oxidation behavior of TiN/AlN multilayer films prepared by ion beam-assisted deposition,” Thin Solid Films 397 (2001) 203
65. C.M. Cheng, Y.T. Cheng, “On the initial unloading slope in indentation of elastic-plastic solids by an indenter with an axisymmetric smooth profile,” Appl. Phys. Lett. 71 (1997) 2623
66. W.C. Oliver, “Alternative technique for analyzing instrumented indentation data,” J. Mater. Res. 16 (2001) 3202
67. W. C. Oliver, G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Matter. Res. 7 (1992) 1564
68. J. M. Bennett and L. Mattsson, “Introduction to Surface Roughness and Scattering,” Optical Society of America, Washington, D. C., (1989) Chap. 4, pp. 39.
69. T. R. Thomas, “Rough Surfaces,” 2nd Edition, Imperial College Press, London, (1999) Chap. 2, pp. 21.
70. Instruction Manual, Electron Diffraction Tube-Welch Scientific Co. Cat. No.2639.
71. D. B. Williams, C. Barry Carter, “Transmission Electron Microscopy,” Plenim Press, New York, 1996.
72. V.S. Sastri, “Corrosion Inhibitors-Principles and Applications”, John Wiley and Sons, Chichester, 1998
73. B. Elsener, A. Rota, H. Bohni, “Impedance study on the corrosion of PVD and CVD titanium nitride coatings”, Mater. Sci. Forum 44/45 (1989) 28
74. C. Deslouis, M.M. Musiani, B. Tribollet, M.A. Vorotyntsev, “Comparison of the AC-impedance of conducting polymer-films studied as electrode-supported and freestanding membranes”, J. Electrochem. Soc. 142 (1995) 1902.
75. R.S. Lillard, J. Kruger, W.S. Tait, P.J. Moran, “Using local electrochemical impedance spectroscopy to examine coating failure”, Corrosion 51 (1995) 251.
76. F. Mansfeld, “Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer-coatings”, J. Appl. Electrochem. 25 (1995) 187.
77. C. Liu, A. Leyland, Q. Bi, A. Matthews, “Corrosion resistance of multi-layered plasma-assisted physical vapour deposition TiN and CrN coatings”, Surf. Coat. Technol. 141 (2001) 164.
78. C. Liu, Q. Bi, A. Leyland, A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution:Part I. Establishment of equivalent circuits for EIS data modelling” Corros. Sci. 45 (2003) 1243
79. C. Liu, Q. Bi, A. Leyland, A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution:Part II. EIS interpretation of corrosion behaviour” Corros. Sci. 45 (2003) 1257
80. W. Stephen Tait, “An introduction to electrochemical corrosion testing for practicing engineers and scientists” Pair O Docs Pubns. (1994) pp82-83
81. C. Liu, Q. Bi, A. Matthews, "EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution", Corros. Sci. 43 (2001) 1953
82. S.H. Ahn, Y.S. Choi, J.G. Kim, J.G. Han, "A study on corrosion resistance characteristics of PVD Cr-N coated steels by electrochemical method", Surf. Coat. Technol. 150 (2002) 319
83. K.L. Chang, S.C. Chung, S. Han, J.W. Hsu, X.J. Guo, H.C. Shih, "Effect of metal vapor vacuum arc-implanted Cr on the electrochemical behavior of CrN-coated steels", J. Mater. Res. 19(8) (2004) 2448
84. V.K. William Grips, Harish C. Barshilia, V. Ezhil Selvi, Kalavati, K.S. Rajam, "Electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive direct current magnetron sputtering", Thin Solid film 514 (2006) 204
85. V.K. William Grips, V. Ezhil Selvi, Harish C. Barshilia, K.S. Rajam, "Effect of electroless nickel interlayer on the electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive dc magnetron sputtering", Electrochimica Acta 51 (2006) 3461
86. Y.H. Yoo, J.H. Hong, J.G. Kim, H.Y. Lee, J.G. Han, "Effect of Si addition to CrN coatings on the corrosion resistance of CrN/stainless steel coating/substrate system in a deaerated 3.5 wt.% NaCl solution", Surf. Coat. Technol. 201 (2007) 9518
87. S.H. Ahn, J.H. Hong, J.G. Kim, J.G. Han, "Effect of microstructure on corrosion behavior of TiN hard coatings produced by a modified two-grid attachment magnetron sputtering process", Thin Solid Films 515 (2007) 6878
88. B.A. Boukamp, “AC-immittance Analysis System”, Ver. 3.97., Faculty of Chemical Technology, University of Twente, The Netherlands, 1989.
89. B.A. Boukamp, “Equivalent Circuit Users Manual”, 2nd ed., Copyright B.A. Boukamp/Report:CT89/214/128. Laboratory of inorganic chemistry, materials science and catalysis, Faculty of Chemical Technology, University of Twente, The Netherlands, 1989
90. G.H. Jeng, “Hard Nitride Films of High-Entropy Alloy Prepared by RF Magnetron Sputtering”, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan (2005)
91. J.I. Goldstein, “Scanning Electron Microscopy and X-ray Microanalysis,” 2nd ed. Plenum Press, New York, USA (1992)
92. T. T. Sheng and C. C. Chang, “Transmission Electron Microscopy of Cross Section of Large Scale Integrated Circuits,” IEEE Trans, Electron Devices, ED-23, (1976) 531
93. Charles T. Lynch, “Handbook of Material Science” Vol. 1 General Properties, CRC Press, (1974)
94. T.K. Chen, T.T. Shun, J.W. Yeh, M.S. Wong, “Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering”, Surf. Coat. Technol. 188-189 (2004) 193
95. H. Holleck, in: A. Kumar, Y. W. Chung, J. J. Moore, J. E. Smugeresky (Eds.), “Surface Engineering: Science and Technology I, The Minerals, Metals and Materials Society”, (1999) pp. 207–231
96. I.W. Park, S.R. Choi, M.H. Lee, K.H. Kim, “Effects of Si addition on the microstructural evolution and hardness of Ti–Al–Si–N films prepared by the hybrid system of arc ion plating and sputtering techniques”, J. Vac. Sci. Technol. A21 (4) (2003) 895
97. Y.Z. Tsai, J.G. Duh, "Thermal stability and microstructure characterization of CrN/WN multilayer coatings fabricated by ion-beam assisted deposition", Surf. Coat. Technol. 200 (2005) 1683
98. F.B. Wu, S.K. Tien, J.G. Duh, “Manufacture, microstructure and mechanical properties of CrWN and CrN/WN nanolayered coatings”, Surf. Coat. Technol. 200 (5-6) (2005) 1514
99. S.K. Tien, J.G. Duh, “Effect of heat treatment on mechanical properties and microstructure of CrN/AlN multilayer coatings”, Thin Solid Films 494 (2006) 173
100. M. Kawate, A.K. Hashimoto, T. Suzuki, “Oxidation resistance of Cr1-xAlxN and Ti1-xAlxN films”, Surf. Coat. Technol. 165 (2003) 163
101. S.K. Tien, J. G. Duh, J.W. Lee, “Oxidation behavior of sputtered CrN/AlN multilayer coatings during heat treatment”, Surf. Coat. Technol. 201 (2007) 5138
102. K. Kutschej, P.H. Mayrhofer, M. Kathrein, P. Polcik, C. Mitterer, “Influence of oxide phase formation on the tribological behaviour of Ti-Al-V-N coatings”, Surf. Coat. Technol. 200 (2005) 1731
103. I.W. Park, S.R. Choi, J.H. Suh, C.G. Park, K.H. Kim, "Deposition and mechanical evaluation of superhard Ti–Al–Si–N nanocomposite films by a hybrid coating system", Thin Solid Film 447-448 (2004) 443
104. I.W. Park, D.S. Kang, J.J. Moore, S.C. Kwon, J.J. Rha, K.H. Kim, "Microstructures, mechanical properties, and tribological behaviors of Cr–Al–N, Cr–Si–N, and Cr–Al–Si–N coatings by a hybrid coating system", Surf. Coat. Technol. 201 (2007) 5223
105. J. Takadoum, H. Houmid-Bennani, D. Mairey, “The wear characteristics of silicon nitride”, J. Eur. Ceram. Soc. 18 (1998) 553
106. J.G. Xu, K. Kato, “Formation of tribochemical layer of ceramics sliding in water and its role for low friction”, Wear 245 (2000) 61
107. C.H. Lai, S.J. Lin, J.W. Yeh, S.Y. Chang, “Preparation and characterization of AlCrTaTiZr multi-element nitride coatings”, Surf. Coat. Technol. 201 (2006) 3275
108. C.H. Lai, S.J. Lin, J.W. Yeh, Davison A, “Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr)N coatings”, J. Phys. D: 39 (2006) 4628
109. C.H. Lin, J.G. Duh, J.W. Yeh, “Multi-component nitride coatings derived from Ti–Al–Cr–Si–V target in RF magnetron sputter”, Surf. Coat. Technol. 201 (2007) 6304
110. H.A. Jehn, “Improvement of the corrosion resistance of PVD hard coating–substrate systems”, Surf. Coat. Technol. 125 (2000) 212
111. G.S. Frankel, “Pitting Corrosion of Metals:A Review of the Critical Factors”, J. Electrochem. Soc. 145 (1998) 2186
112. S.K. Tien, C.H. Lin, Y.Z. Tsai, J.G. Duh, "Effect of nitrogen flow on the properties of quaternary CrAlSiN coatings at elevated temperatures", Surf. Coat. Technol. 202 (2007) 735
113. U.C. Oh, J.H. Je, “Effects of strain-energy on the preferred orientation on TiN thin films”, J. Appl. Phys. 74 (1993) 1692
114. L. Chekour, C. Nouveau, A. Chala, C. Labidi, N. Rouag, M.A. Djouadi, “Growth mechanism for chromium nitride films deposited by magnetron and triode sputtering methods”, Surf. Coat. Technol. 200 (2005) 241
115. J.H. Je, D.Y. Noh, H.K. Kim, K.S. Liang, “Preferred orientation of TiN films studied by a real time synchrotron x-ray scattering”, J. Appl.Phys. 81 (1997) 6126
116. C. Liu, Q. Bi, H. Ziegele, A. Leyland, A. Matthews, “Structure and corrosion properties of PVD Cr–N coatings”, J. Vac. Sci. Technol. A 20 (3) (2002) 772
117. C.H. Lin, J. G. Duh, “Corrosion behavior of (Ti-Al-Cr-Si-V)xNy coatings on mild steels derived from RF magnetron sputtering”, Surf. Coat. Technol. 203 (2008) 558