簡易檢索 / 詳目顯示

研究生: 陳哲凱
Chen,Jhe Kai
論文名稱: 均溫板標準量測實驗之建立與參數影響之研究
Some important parameters affect the measurement of the vapor chamber
指導教授: 林唯耕
Lin,Wei-Keng
口試委員: 鄒蘊明
林鴻文
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 126
中文關鍵詞: 均溫板熱擴散率熱阻厚寬比
外文關鍵詞: Vapor chamber, Thermal difficivitye, Thermal resistance, Aspect ratio
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以建立均溫板之標準實驗架設並制定均溫板性能參數之量測方法為目標,以供學界與業界作參考。本文設計包含均溫板性能量測平台與熱擴散率量測平台。均溫板性能量測平台主要以冷凝水套式整體測試機台架構與實驗,使用不同治具,研究其熱阻值之變化。本實驗之冷凝水套有三種,分別為有無流道之冷凝水套(Type A)、有流道之冷凝水套(Type B)與冷凝水套(Type C),施力治具有兩種,分別為電木支撐塊與鋁板夾具,另有測溫銅塊一個。目前以無測溫銅塊、無電木支撐塊、有流道之冷凝水套、使用鋁製夾具之實驗架設能得到最佳及最小之均溫板熱阻實驗數值,因此可以作為業界之參考。
    此外,以Angstrom method理論模型分成一維模式及二維模式分別進行理論分析。實驗方面以定義不同之厚寬比τ之金屬待測物之量測結果,發現厚寬比τ小於0.1之待測物,適用一維理論模式;而對於厚寬比τ大於0.1之待側物,則適合二維理論模式。另外,以四種純金屬待測物量測熱擴散率之實驗結果,與標準值之誤差都在10%以內,而重複性誤差值皆在5%內。


    This paper presents some of the important parameters while measure the vapor chamber axial thermal resistance. The experiment also included how to improve the accuracy of the axial thermal resistance by using different fixtures in different conditions. Using a water jacket as an example, the laboratory equipment include a water jacket without flow channel (Type A), water jackets with flow channel (Type B、Type C), a copper block with thermal couples, two Bakelite supports and an aluminum clamp. The research shows that the experiment with an aluminum clamp, Type B water jacket without Bakelite support and copper block will get the best performance.
    In addition, a thermal diffusivity of vapor chamber measurement device is also developed in experiment. The results indicate that one dimension mode is fit when vapor chamber aspect ratio τ less than 0.1; while two dimension mode is suggested when aspect ratio larger than 0.1. Four pure metals were analyzed in experiment and compare with its standard thermal diffusivity, all the error are within 10%. The repeatability error is less than 5%.

    目錄 摘要 I Abstract II 誌謝 III 圖目錄 VIII 表目錄 XIV 符號表 XVII 第一章 緒論 1 1.1前言 1 1.2研究動機 3 1.3文獻回顧 4 第二章 實驗理論 17 2.1以冷凝水套為冷卻系統之實驗理論 17 2.2熱擴散率量測理論 22 第三章 實驗設計和實驗設備 26 3.1實驗設計 26 3.1.1以冷凝水套為冷卻系統之實驗架設 26 3.1.2熱擴散率量測系統之程式設計與操作流程 31 3.1.3 熱擴散率量測系統之校正與Angstrom method理論模式驗證 32 3.2實驗設備 32 3.2.1以冷凝水套為冷卻系統之實驗儀器 32 3.2.2熱擴散率量測儀器 42 第四章 實驗結果與討論 45 4.1以冷凝水套為冷卻系統之實驗結果 45 4.1.1 以TypeⅠ實驗方法之實驗結果 45 4.1.1.1非對稱型均溫板,使用測溫銅塊、Type A水套之實驗結果 45 4.1.1.2非對稱型均溫板,無使用外加治具、Type A水套實驗結果 47 4.1.1.3非對稱型均溫板,使用電木支撐塊、Type A水套之實驗結果 49 4.1.1.4非對稱型均溫板,使用電木支撐塊、Type B水套之實驗結果 52 4.1.1.5非對稱型均溫板,使用鋁板夾具、Type B 水套之實驗結果 55 4.1.1.6對稱型均溫板,使用鋁板夾具、Type A水套之實驗結果 58 4.1.1.7對稱型均溫板,使用鋁板夾具、Type B 水套之實驗結果 61 4.1.2以TypeⅡ實驗方法之實驗結果 64 4.1.2.1對稱型均溫板,使用鋁板夾具、Type B水套、TC=30℃之實驗結果 64 4.1.2.2對稱型均溫板,使用鋁板夾具、Type B水套、TC=40℃之實驗結果 67 4.1.2.3對稱型均溫板,使用鋁板夾具、Type B水套、TC=50℃之實驗結果 70 4.1.3 TypeⅠ實驗方法與TypeⅡ實驗方法之實驗結果比較 73 4.1.4 冷凝部溫度以九宮格五點溫度平均為參考溫度之實驗結果 75 4.1.4.1對稱型均溫板,使用鋁板夾具、Type B水套,TC=30℃實驗結果 75 4.1.4.2對稱型均溫板,使用鋁板夾具、Type B水套,TC=40℃實驗結果 78 4.1.4.3對稱型均溫板,使用鋁板夾具、Type B水套,TC=50℃實驗結果 81 4.1.4.4對稱型均溫板,使用鋁板夾具、Type C水套,TC=30℃實驗結果 84 4.1.4.5對稱型均溫板,使用鋁板夾具、Type C水套,TC=40℃實驗結果 87 4.1.4.6對稱型均溫板,使用鋁板夾具、Type C水套,TC=50℃實驗結果 90 4.2 熱擴散率量測系統之實驗結果 93 4.2.1 最佳量測距離之實驗結果 93 4.2.2 最佳加熱功率及加熱週期之實驗結果 95 4.2.3 Angstrom method一維理論模式之實驗結果 97 4.2.4 Angstrom method二維理論模式之實驗結果 101 第五章 結論 106 參考文獻 107 附錄A 熱擴散率量測系統硬體操作SOP 112 附錄B 熱擴散量測系統軟體操作SOP 116

    [1] 中國國家標準化管理委員會,中華人民共和國國質量監督檢驗檢疫總局,「熱管術語」,中華人民共和國國家標準,GB/T 14811-2008,ICS 27.060.30
    [2] 中國國家標準化管理委員會,中華人民共和國國質量監督檢驗檢疫總局,「熱管傳熱性能是驗方法」,中華人民共和國國家標準,GB/T 14812-2008,ICS 27.060.30
    [3] 中國國家標準化管理委員會,中華人民共和國國質量監督檢驗檢疫總局,「熱管壽命試驗方法」, 中華人民共和國國家標準,GB/T 14813-2008,ICS 27.060.30
    [4] 中國國家標準化管理委員會,中華人民共和國國質量監督檢驗檢疫總局,「熱管術語」,中華人民共和國國家標準,GB/T 24767-2009,ICS 27.160.77,140.75
    [5] M. Mochizuki, Y. Saito, F. Kiyooka, T. Nguyen, “The way we were and are going on cooling high power processors in the industries, The Seventh International Symposium in Transport Phenomena”, Toyama, Japan, September4-8,2006.
    [6] K. Grubb, CFD modeling of a Therma-Base heat sink, 8th International FLOTHERM User Conference,1999.
    [7] S.-C. Wong K,-C. Hsieh, J.-D. Wu, Wu.-L. Han, “A novel vapor chamber and its performance “,submitted to Int. J. Heat Mass Transfer53(2010)2377-2384.
    [8] S.-C. Wong K,-C. Hsieh, J.-D. Wu, Wu.-L. Han,” Experiments on a novel vapor chamber”, ITHERM 2008 Conference, Orlando, FL, USA, May 28-31,2008.
    [9] R. Boukhanouf, A. Haddad, M.T. North, C. Buffone,” Experimental investigation of a flat plate heat pipe performance using IR thermal imaging”, Applied Thermal Engineering 26(2006)2148-2156.
    [10] J. Wei, Challenges in cooling design of CPU packages for high-performance servers, Heat Transfer Engineering 29 (2008)178-187.
    [11] G.S. Hwang, Y. Nam, E. Fleming, P. Dussinger, Y.S. Ju, M. Kaviany, Multi-artery heat pipe spreader experiment, Int. J. Heat Mass Transfer 53(2010)-2662-2669.
    [12] G.P. Peterson, Y. Wang, C. Li, “Evaporation/Boiling in thin capillary wicks (ɪ)-wick thickness effect”, ASME Journal of Heat Transfer 128(2006)1312-1319.
    [13] G.P. Peterson, C. Li, “Evaporation/Boiling in thin capillary wicks (П)-effects of volumetric porosity and mesh size , ASME Journal of Heat Transfer 128(2006)1320-1328.
    [14] Y. Wang, G.P. Peterson, “Investigation of a novel flat heat pipe”, ASME Journal of Heat Transfer 125(2003)644-652.
    [15] M.A. Hanlon, H.B. Ma, “Evaporation heat transfer in sintered porous media”, ASME Journal of Heat Transfer 125(2003)644-652.
    [16] Y. Wang, K. Vafai, “An experimental investigation of thermal performance of an asymmetrical flat plate heat pipe” , Int. J. Heat Mass Transfer 43(2000) 2657-2668.
    [17] M. Mochizuki, T. Nguyen, Y. Saito, Y. Horiuchi, K. Mashiko, T. Tanaphan, and Y. Kawahara,” Latest vapor chamber technology for computer”, The 8th International Heat pipe Symposium, Japan, September,2006.
    [18] H. Agata, F. Kiyooka, M. Mochizuki, K. Mashiko, Y. Saito, Y. Kawahara, T. Nguyen,” Advance thermal solution using vapor chamber technology for cooling high performance desktop CPU in notebook computer”, The 1st International Symposium on Micro & Nano Technology, Honolulu, Haiwaii, USA, March 4-17, 2004.
    [19] Bridgman, P. W, “Thermal conductivity and compressibility of several rocks under high pressures”, Am. J. Sci., Ser. 5, 7, 81-102, 1924.
    [20] Birch, F., and H. Clark, “The thermal conductivity of rocks and its dependence upon temperature and composition”, Am. J. Sci., 238, 529-558, 1940.
    [21] Clark, H, “The effects of simple compression and wetting on the thermal conductivity of rocks”, Trans. Am. Geophys. Union, 22, 543-544, 1941.
    [22] Sidles, P.H., and G. C. Danielson,”Thermal diffusivity of metals at high temperatures”, J. Appl. Phys., 25, 58-66,1954.
    [23] Kingery, W.D., and M. C. McQuarrie, “Thermal conductivity: 1, Concepts of measurement and factors affecting thermal conductivity of ceramic materials”, J. Am. Ceramic Soc., 37, 67-72, 1954.
    [24] Kingery, W.D., “Property Measurements at High Temperatures, edited by W. D. Kingery”, pp. 100-117, John Wiley & Sons, New York, 1959.
    [25] Wray, K. L., and T. J. Connolly, “Thermal conductivity of clear fused silica at high temperatures”, J. Appl. Phys., 30, 1702-1705, 1959.
    [26] Nii, “Measuring method of thermal conductivity of semiconductors”, Electrical Communication Laboratory Technical Journal, 9, 817-825, 1960.
    [27] Horn, F., and H. Wilski, “Messung der Temperaturitfahigkeit mit Hilfe von Zylindrischen Warmewellen”, Chemie-Ingenieur-Technik, 35, 19-25, 1963.
    [28] Kawada, K, “Studies of the thermal state of the earth, 15., Variation of thermal conductivity of rocks”, 1, Bull. Earthquake Res. Inst. Tokyo Univ., 42, 631-647, 1964.
    [29] Mirkovich, V. V., “Comparative method and choice of standards for thermal conductivity determinations”, J. Am. Ceramic Soc., 48, 387-391, 1965.
    [30] Hughes, D.S., and F. Sawin, “Thermal conductivity of dielectric solids at high pressure”, Phys. Rev., 161, 861-863, 1967.
    [31] Tomokiyo, A., and T. Okada, “Determination of thermal diffusivity by the temperature wave method”, Japanese Journal of Applied Physics, 7, 128-134, 1968.
    [32] Hiroo Kanamori, Hitoshi Mizutani, Naoyuki Fuji, “Method of Thermal Diffusivity Measurement”, Journal of Physics of Earth, Vol. 17, No.1, 1969.
    [33] J.E. Parrott and A.D. Stuckes, “Thermal Conductivity of Solids”, Pion Limited, London, 1975.
    [34] G. Wagoner, K.A. Skokova* and C.D. Levan*, Angstrom’s method for thermal property measurements of carbon fibers and composites“, Wagoner Enterprises, Inc. 26564 Lake Road, Bay Village, OH 44140, *BP Amoco Polymers, Inc., 4500 McGinnis Ferry Road, Alpharetta, GA 30005, 1999.
    [35] M.Pilar Utrillas, Roberto Pedros, Jose A. Martinez-Lozano, “A new method for determining the angstrom Turbidity coefficient from broadband filter measurements” Manuscript received 13 November 1998, in final form 30 June 1999.
    [36] Andrew M. Bouchard, “Angstrom’s Method of Determining Thermal Conductivity”, Physics Department, The College of Wooster, Ohio 44691 May 4, 2000.
    [37] Amy L. Lytle, “ Angstrom method of Measuring Thermal Conductivity”, Physics Department, The College of Wooster, Ohio 44691 May 5, 2000.
    [38] 姚漢洲,「以Angstorm method量測均溫板之可行性研究」,國立清華大學工程與系統科學所,碩士論文.,中華民國一零二年
    [39] 朱品彥,「均溫板性能量測參數之影響研究」,國立清華大學工程與系統科學所,碩士論文.,中華民國一零三年

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE