研究生: |
楊書孟 Yang, Shu-Meng |
---|---|
論文名稱: |
具改善最低操作電壓,速度與功耗之耐穩記憶體電路 Robust Memory Circuits for VDDmin, Speed and Power Improvement |
指導教授: |
張孟凡
Chang, Meng-Fan |
口試委員: |
洪浩喬
Hao-Chiao Hong 黃柏鈞 Po-Chiun Huang 謝志成 Chih-Cheng Hsieh 邱瀝毅 Lih-Yih Chiou |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 100 |
中文關鍵詞: | 記憶體電路 、時序追蹤電路 、感測放大器 、寬操作電壓範圍 、最低操作電壓 |
外文關鍵詞: | Memory Circuit, Bitline tracking, Sense Amplifier, Wide-VDD, VDDmin |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電源電壓縮調技術,通常在低功耗系統級芯片(SoC)設計中被採用。但不利的影響對記憶體電路來說已日益顯著,如電壓相關的時序偏移和小感應電壓容許空間。在本論文中,我們對電壓相關的時序偏移和小感應電壓容許空間在記憶體電路所造成的功能故障進行了研究,並且提出了克服電壓相關的時序偏移與減少感應電壓容許空間需求的電路技術。
電壓相關的時序偏移常造成記憶體電路在預充電與感測階段的功能故障並造成記憶體電路在速度性能方面的下降。同時,儲存資料相關的位元線漏電流更進一步增加了時序偏移並降低記憶體存電路的良率。因此我們發展了Dual-Mode Self-Timed (DMST) 技術來消除時序偏移在不同製程,電壓與溫度 (PVT) 條件下所造成的功能故障與速度性能的損失。相較於傳統的位元線時序追踪技術,在相同的電路面積下,DMST技術,實現了高可擴展性和良好的減少時序偏移成果。實驗結果顯示,DMST技術可以在很寬的電源電壓範圍運作,從額定電壓 (VDD = 3.3V) 的39.4 %到151.5 %。
低的供應電源電壓已成為有效降低電路功率消耗的一種途徑。但這種方法常導致感應電壓容許空間縮小,並導致速度性能下降與記憶體電路讀取功能故障,特別是對於那些高密度優先的記憶體如被設計成長位元線以提高記憶位元陣列效率的單端讀取的NAND-ROM。這裡我們提出了Data-Aware Sensing Reference (DASR) 機制,它在給定的時序內維持讀0和讀1所需的感讀裕量。其中的關鍵機制在於採取自適變化的參考電壓的,使得所述的讀1和讀取0感應電壓容許空間相重疊,如同差動讀取的位元線組。實驗結果顯示90奈米CMOS邏輯製程所製作的256 Kb DASR NAND ROM 能在0.25 V的操作電壓下運作。同時在操作電壓=0.31V下, DASR較傳統NAND ROM的設計能增加66.7 %的速度性能表現。
綜上所述,本論文所提出的DMST和DASR技術運用於記憶體電路以克服低功耗系統晶片在實現上所面臨的挑戰。
Supply-voltage (VDD) scaling techniques are often employed in low power Sys-tem-on-Chip (SoC) design; however, adverse impacts such as voltage-dependent timing skews and small sensing headroom have become increasingly significant on memory circuits. In this dissertation, functional failures induced by voltage-dependent timing skews and small sensing headroom in memory circuits are investigated. Techniques to overcome voltage-dependent timing skews and reduce sensing headroom requirement are proposed.
Voltage-dependent timing skews in precharge and sensing activities cause func-tional failure and reduce the speed performance of embedded memory. Data-dependent bitline leakage current further increases the timing skews and reduces the yield of memory circuit. A dual-mode self-timed (DMST) technique is developed to eliminate the timing-skew-induced failures and speed degradation across various process, voltage and temperature (PVT) conditions. Comparing to the conventional sense-tracking-only replica column schemes, DMST technique achieves high scalability and timing skews reduction for various bitline (BL) lengths. Experimental results demonstrated that the DMST technique can operate continuously over a wide range of supply-voltage, from 39.4% to 151.5% of the nominal supply-voltage VDD = 3.3V.
Low supply-voltage has emerged as an effective way to reduce circuit power con-sumption. However, this approach incurs small sensing headroom which leads to speed performance degradation and read functional failure in memory circuits, particularly for those density-prioritized memories such as NAND-ROM using a longer single-ended BL sensing scheme to achieve high cell array efficiency. A data-aware sensing reference (DASR) scheme is proposed for maintaining sensing margins for both read-0 and read-1 under given timing constraints at low supply-voltage. The key mechanism involved in maintaining the read sensing margins is the adaptive changing of the reference voltage, such that the sensing headroom or potential range for read-1 and read-0 overlap, as in differential BL sensing. The fabricated 256 Kb DASR NAND-ROM macros in 90-nm bulk CMOS logic process are functional down to 0.25 V. DASR also increases the ac-cess speed by 66.7% at VDD = 0.31 V, compared with other conventional approach without the proposed DASR scheme.
In summary, the DMST and DASR techniques are proposed in this dissertation to deal with the challenging design obstacles in memory circuits for reliable low power SoC implementations.
[1] A. J. Martin and M. Nystrom, “Asynchronous techniques for system-on-chip de-sign,” Proceedings of the IEEE, vol. 96, pp. 1089-1120, June 2006.
[2] M. Ferretti and P. A. Beerel, “High performance asynchronous design using sin-gle-track full-buffer standard cells,” IEEE Journal of Solid-State Circuits, vol. 41, no. 6, pp. 1444-1454, June 2006.
[3] Y.-W. Li, G. Patounakis, K. L. Shepard, “High-throughput asynchronous datapath with software-controlled voltage scaling,” IEEE Journal of Solid-State Circuits, vol. 39, no. 4, pp. 704-708, Nov. 2004.
[4] T. D. Burd, T.A. Pering, A. J. Stratakos, R. W. Brodersen, “A dynamic voltage scaled microprocessor system,” IEEE Journal of Solid-State Circuits, vol. 24, no. 12, pp. 1827-1837, Nov. 2000.
[5] K. J. Nowka, G. D. Carpenter, E. W. MacDonald, H. C. Ngo, B. C. Brock, K. I. Ishii, T. Y. Nguyen and J. L. Burns, “A 32-bit PowerPC system-on-a-chip with support for dynamic voltage scaling and dynamic frequency scaling,” IEEE Journal of Solid-State Circuits, vol. 37, no. 11, pp. 1441-1447, Nov. 2002.
[6] L. Yan, Luo Jiong and N. K. Jha, “Joint dynamic voltage scaling and adaptive body biasing for heterogeneous distributed real-time embedded systems,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 7, pp. 1030-1041, July 2005.
[7] H. Yamauchi, T. Iwata, H. Akamatsu and A. Matsuzawa, “A 0.5 V single power supply operated high-speed boosted and offset-grounded data storage (BOGS) SRAM cell architecture,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 5, no. 4, pp. 377-387, Dec. 1997.
[8] M. Yamaoka, K. Osada and K. Ishibashi, “0.4-V logic-library-friendly SRAM array using rectangular-diffusion cell and delta-boosted-array voltage scheme,” IEEE Journal of Solid-State Circuits, vol. 39, no. 6, pp. 934-940, Mar. 2004.
[9] B. Sahu and G.A. Rincon-Mora, “A low voltage, dynamic, noninverting, syn-chronous buck-boost converter for portable applications,” IEEE Transactions on Power Electronics, vol. 19, no. 2, pp. 443-452, June 2004.
[10] R. Mih, J. Harrington, K. Houlihan H. Lee, K. Chan, J. Johnson, B. Chen, J. Yan, A. Schmidt, C. Gruensfelder, K. Kim, D. Shum, C. Lo, D. Lee, A. Levi and C. Lam, “0.18um modular triple self-aligned embedded split-gate flash memory,” IEEE Symp. VLSI Technology Dig. Tech. Papers, pp. 120-121, June 2000.
[11] J. Tsouhlarakis, G. Vanhorebeek, G. Verhoeven, J. De Blauwe, S. Kim, D. Wellekens, P. Hendrickx, L. Haspeslagh, J. Van Houdt, and H. Maes, “A flash memory technology with quasi-virtual ground array for low-cost embedded ap-plications,” IEEE Journal of Solid-State Circuits, vol. 36, no. 6, pp. 969-978, June 2001.
[12] M.-F. Chang and S.-J. Shen, “A process variation tolerant embedded split-gate Flash memory using pre-stable current sensing scheme,” IEEE Journal of Sol-id-State Circuits, vol. 44, no. 3, pp. 987-994, Mar. 2009.
[13] J. Kim, and K. Lee, “3-Transistor antifuse OTP ROM array using standard CMOS process,” IEEE Symposium on VLSI Circuits Dig. Tech. Papers, pp. 239-242, June 2003.
[14] C.-E. Huang, Y.-J. Chen, H.-C. Lai, Y.-C. King and C.-J. Lin, “A study of self-aligned nitride erasable OTP cell by 45-nm CMOS fully compatible process,” IEEE Trans. Electron Device, vol. 56, no. 6, pp. 1228-1234, Sept. 2009.
[15] C.-Y. Lin, C.-H. Lin, C.-H. Ho, W.-W. Liao, S.-Y. Lee, M.-C. Ho, S.-C. Wang, S.-C. Huang, Y.-T. Lin and C. C.-H. Hsu, “Embedded OTP fuse in CMOS logic process,” in proc. IEEE International Workshop on Memory Technology, Design, and Testing (MTDT), pp. 13-15, Aug. 2005.
[16] J. Peng, G. Rosendale, M. Fliesler, D. Fong, J. Wang, C. Ng, Z.-S. Liu and H. Luan “A novel embedded OTP NVM using standard foundry CMOS logic tech-nology,” in proc. IEEE Non-Volatile Semiconductor Memory Workshop, pp. 24-26, Feb. 2006.
[17] G. Uhlmann, et al., “A commercial field-programmable dense eFUSE array memory with 99.999% sense yield for 45nm SOI CMOS,” in IEEE International Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 406-407, Feb. 2008.
[18] S. H. Kulkarni, et al., “High-density 3-D metal-fuse PROM featuring 1.37um2 1T1R bit cell in 32nm high-k metal-gate CMOS technology,” in IEEE Symp. VLSI Circuits Dig. Papers, pp. 28-29, June 2009.
[19] S. Chung, et al., “A 1.25um2 cell 32Kb electrical fuse memory in 32nm CMOS with 700mV Vddmin and parallel/serial interface,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, pp. 30-31, June 2009.
[20] K.-T. Tang, et al., “A Low-Power Electronic Nose Signal-Processing Chip for a Portable Artificial Olfaction System,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5, no. 4, pp. 380-390, Aug. 2011.
[21] H. Morimura, et al., “A step-down boosted-wordline scheme for 1-V bat-tery-operated fast SRAM’s,” IEEE Journal of Solid-State Circuits, vol. 33, no. 8, pp. 1220-1227, Aug. 1998.
[22] C.-C. Wang, et al., “A 4-kB 500-Mhz 4-T CMOS SRAM using low-Vthn bitline drivers and high-vthp latches,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12, no. 9, pp. 901-909, Sept. 2004.
[23] A. Sekiyama, et al., “A 1-V operating 256-kb full-CMOS SRAM,” IEEE Journal of Solid-State Circuits, vol. 27, no. 5, pp. 776-782, May 1992.
[24] S. T. Flannagan, et al., “Two 13-ns 64K CMOS SRAM’s with very low active power and improved asynchronous circuit techniques,” IEEE Journal of Sol-id-State Circuits, vol. 21, no. 5, pp. 692-1744, Oct. 1986.
[25] T. P. Haraszti, CMOS Memory Circuit. Norwell, MA: Kluwer, 2000, pp. 36-39.
[26] B. S. Amrutur, et al., “A replica technique for word line and sense control in low-power SRAM’s,” IEEE Journal of Solid-State Circuits, vol. 33, no. 8, pp. 1208-1219, Aug. 1998.
[27] K. Osada, et al., “Universal-Vdd 0.65V-2.0V 32-KB Cache using a volt-age-adapted timing-generation scheme and a lithographically symmetrical cell,” IEEE Journal of Solid-State Circuits, vol. 36, no. 11, pp. 1738-1744, Nov. 2001.
[28] B. Wicht, et al., “Yield and speed optimization of a latch-type voltage sense am-plifier,” IEEE Journal of Solid-State Circuits, vol. 39, no. 7, pp. 1804-1814, July 2004.
[29] M.-F. Chang, et al., “Supply and substrate noise tolerance using dynamic track-ing clusters in configurable memory designs,” in Proc. IEEE Int. Symp. Quality Electronic Design, pp. 297-302, Mar. 2004.
[30] D.-M. Kwai, et al., “SRAM cell current in low leakage design,” in Proc. IEEE International Workshop on Memory Technology, Design, and Testing, pp. 65-70, Aug. 2006.
[31] A. Agarwal, et al., “Process variation in embedded memories:failure analysis and variation aware architecture,” IEEE Journal of Solid-State Circuits, vol. 40, no. 9, pp.1804-1814, Sept. 2005.
[32] H. Nambu, et al., “A 1.8-ns Access, 550Mhz, 4.5Mb CMOS SRAM,” IEEE Journal of Solid-State Circuits, vol. 33, no. 11, pp. 1650–1658, Nov. 1998.
[33] K. Ando, et al., “A 0.9-ns-access, 700MHz SRAM macro using a configurable organization technique with an automatic timing adjuster,” IEEE Symp. VLSI Circuits, Dig. Tech. Papers, pp. 182-183, June 1998.
[34] M.-F. Chang, et al., “A full code-pattern coverage high-speed embedded ROM using dynamic virtual guardian technique,” IEEE Journal of Solid-State Circuits, vol. 41, no. 2, pp. 496-506, Feb. 2006.
[35] M.-F. Chang, et al., “Crosstalk-insensitive via-programming ROMs using con-tent-aware design framework,” IEEE Trans. Circuits Syst. II, vol. 53, no. 6, pp. 443-447, June 2006.
[36] M.-F. Chang, et al., “An Offset-Tolerant Current-Sampling-Based Sense Ampli-fier for Sub-100nA-Cell-Current Nonvolatile Memory,” in IEEE International Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 206-207, Feb. 2011.
[37] N. Verma, et al., “A High-Density 45 nm SRAM Using Small-Signal Non-Strobed Regenerative Sensing,” IEEE Journal of Solid-State Circuits, vol. 44, no. 1, pp. 163–173, Jan. 2009.
[38] M.-F. Chang, et al., “Noise-Immune Embedded NAND-ROM Using a Dynamic Split Source-Line Scheme for VDDmin and Speed Improvement,” IEEE Journal of Solid-State Circuits, vol. 45, no. 10, pp. 2142-2154, Oct. 2010.
[39] M. Seok, et al., “Robust ultra-low voltage ROM design,” in Proc. IEEE 2008 Custom Integrated Circuits conference (CICC), pp. 423-426, Sept. 2008.
[40] K. Ishibashi, et al., “A 1V TFT-load SRAM using a two-step word-voltage method,” IEEE Journal of Solid-State Circuits, vol. 27, no. 11, pp. 1519-1524, Nov. 1992.
[41] H. Toyoshima, et al., “A 6-ns 1.5-V, 4-Mb BiCMOS SRAM,” IEEE Journal of Solid-State Circuits, vol. 31, no. 11, pp. 1610-1617, Nov. 1996.
[42] K. Agawa, et al., “A bitline leakage compensation scheme for low-voltage SRAMs,” IEEE Journal of Solid-State Circuits, vol. 36, no.5, pp. 726-734, May 2001.
[43] S. Hsu, et al., “A 4.5-GHz 130-nm 32-KB L0 cache with a leakage-tolerant self reverse-bias bitline scheme,” IEEE Journal of Solid-State Circuits, vol. 38, no. 5, pp. 755-761, May 2003.
[44] Y. Ye, et al., “A 6-GHz 16-kB L1 cache in a 100-nm dual-V/sub T/ technology using a bitline leakage reduction (BLR) technique,” vol. 38, no. 5, pp. 839-842, May 2003.
[45] T.-H. Kim, et al., “A high-density subthreshold SRAM with data-independent bitline leakage and virtual ground replica scheme,” in Proc. IEEE International Solid-State Circuits Conference, pp. 330-331, Feb. 2007.
[46] C.-C. Wang, et al., “A 4-kb low-power SRAM design with negative word-line scheme,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 5, pp. 1069-1076, May 2007.
[47] M.-F. Chang, et al., “Analysis and reduction of supply noise fluctuations in-duced by embedded via-programming ROM,” IEEE Trans. Very Large Scale In-tegration (VLSI) Systems, vol. 17, no. 6, pp. 758-769, June 2009.
[48] H. Kawagoe, et al., ”Minimum size ROM structure compatible with silicon-gate E/D MOS LSI,” IEEE Journal of Solid-State Circuits, vol. SC-11, no. 4, pp.360-364, 1976.
[49] S. Kamuro, et al., “A 256Kb ROM fabricated using n-well CMOS Process technology,” IEEE Journal of Solid-State Circuits, vol. SC-17, no. 4, pp.723-726, Aug. 1982.
[50] M.-F. Chang, et al., “A 0.29V embedded NAND-ROM in 90nm CMOS for ultra low voltage applications,” in IEEE International Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 17-19, Feb. 2010.
[51] R. Sasagawa, et al., “High-speed cascade sensing scheme for 1.0V con-tact-programming Mask ROM,” in IEEE Symposium on VLSI Circuits Dig. Tech. Papers, pp. 95–96, June 1999.
[52] H. Takahashi, et al., “A new contact programming ROM architecture for digital signal processor,” in Proc. IEEE Symp. VLSI Circuits Dig. Tech. Papers, pp. 158-161, June 1998.
[53] C.-R. Chang, et al., “Low-Power and High-speed ROM Modules for ASIC Ap-plications,” IEEE Journal of Solid-State Circuits, vol. 36, no. 10, pp. 1516-1523, Oct. 2001.
[54] K. Takeuchi, et al., “A 56nm CMOS 99mm2 8Gb multi-level NAND Flash memory with 10MBs program throughput,” in IEEE International Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 507-516, Feb. 2006.
[55] T. Tanaka, et al., “A quick intelligent page-programming architecture and a shielded bitline sensing method for 3 V-only NAND flash memory,” IEEE Journal of Solid-State Circuits, vol. 29, no. 11, pp. 539–542, Nov. 1994.
[56] J. Lee, et al., “A 90-nm CMOS 1.8-V 2-Gb NAND Flash Memory for Mass Storage Applications,” IEEE Journal of Solid-State Circuits, vol. 38, no. 11, pp. 1934–1942, Nov. 2003.
[57] K. Takauchi, et al., “A negative Vth cell architecture for highly scalable, excel-lently noise-immune, and highly reliable NAND Flash memories,” IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 675–684, May 1999.
[58] H. Hidaka, et al., “Twisted bit-line architectures for multi-megabit DRAM’s,” IEEE Journal of Solid-State Circuits, vol. 24, pp. 21-27, Feb. 1989.
[59] K. Noda, et al., “An ultrahigh-density high-speed loadless four-transistor SRAM macro with twisted bitline architecture and triple-well shield,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 510-515, Mar. 2001.
[60] S. Takashima, et al., “Open/folded bitline arrangement for ultra-high-density DRAMs,” IEEE Journal of Solid-State Circuits, vol. 29, no. 4, pp. 539-542, Apr. 1994.
[61] K. Yamaoka et al., “A 0.9-V 1T1C SBT-based embedded nonvolatile FeRAM with a reference voltage scheme and multilayer shielded bitline structure,” IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 286–292, Jan. 2005.
[62] E. Shirai, “CMOS Multistage Preamplifier Design for High-Speed and High-Resolution Comparators,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54, no. 2, pp. 166-170, Feb. 2007.
[63] B. J. McCarroll, et al., “A High-speed CMOS Comparator for Use in an ADC,” IEEE Journal of Solid-State Circuits, vol. 23, no. 1, pp. 159-165, Feb. 1988.
[64] M.-F. Chang, S.-M. Yang and J.-W. Miaw, “Single-ended sense amplifier using dynamic reference voltage and operation method thereof,” U.S. Patent No. 7,768,321 August 3, 2010.
[65] A. Tuminaro, “A 400 MHz, 144 Kb CMOS ROM macro for an IBM S/390-class microprocessor,” in Proc. IEEE Int. Conf. Computer Design: VLSI in Computers and Processors, pp. 253-255, Oct. 1997.
[66] T. Tsang, “A compliable read-only-memory library for ASIC deep submicron applications,” in Proc. IEEE 11th Int. Conf. VLSI Design, pp. 490–494, Jan. 1998.
[67] M. J. M. Pelgrom, et al., “Matching properties of MOS transistors,” IEEE Jour-nal of Solid-State Circuits, vol. 24, pp.1433-1440, Oct. 1989.
[68] R. Thewes, et al., “On the matching behavior of MOSFET small signal parame-ters,” in Proc. IEEE Int. Conf. Microelectronic Test Structures, pp. 137-141, Mar. 2000.
[69] Y. Berg, et al., “Tunable Current Mirrors for Ultra Low Voltage,” in ISCA99, May-Jun. 1999.
[70] B. Razavi, Design of Analog CMOS Integrated Circuits. New York:Tata McGraw-Hill, 2004.
[71] J. Gregg, et al., “Post silicon power/performance optimization in the presence of process variations using individual well-adaptive body biasing,” IEEE Transac-tions on Very Large Scale Integration (VLSI) Systems, Mar. 2007.
[72] R. L. Barry, et al., “A high-performance ROM compiler for 0.50 μm and 0.36 μm CMOS technologies,” in Proc. IEEE Int. ASIC Conf. and Exhibit, pp. 370-373, Sept. 1995.
[73] S. E. Schuster, et al., “Fast Low Power eDRAM Hierarchical Differential Sense Amplifier,” IEEE Journal of Solid-State Circuits, vol. 44, no. 2, pp. 631-641, Feb. 2009.
[74] B. Razavi, et al., “Design Techniques for High-speed, High-Resolution Compar-ators,” IEEE Journal of Solid-State Circuits, vol. 27, no. 12, pp. 1916-1926, Dec. 1992.
[75] K. Uyttenhove, et al., “A 1.8-V 6-Bit 1.3-GHz Flash ADC in 0.25um CMOS,” IEEE Journal of Solid-State Circuits, vol. 38, no. 7, pp. 1115-1122, July 2003.
[76] P. M. Figueiredo, et al., “Kickback Noise Reduction Techniques for CMOS Latched Comparators,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 7, pp. 541-545, July 2006.
[77] Datasheet, SPAA90_16384X16BM1A, Synchronous VIA1 ROM Compiler (UMC 90nm Generic Logic Process), Faraday-Tech, 2006.
[78] A. Wang, et al., “A 180-mV FFT processor using subthreshold circuit techniques,” in IEEE International Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 292-529, Feb. 2004.
[79] M.-F Chang, et al., “Wide VDD Embedded Asynchronous SRAM with Du-al-Mode Self-Timed Technique for Dynamic Voltage Systems,” IEEE Transac-tion on Circuits and Systems I, vol.56, no.8, pp. 1657-1667, Aug. 2009.
[80] S.-M Yang, et al., “Low-Voltage Embedded NAND-ROM Macros Using Da-ta-Aware Sensing Reference Scheme for VDDmin, Speed and Power Improve-ment,” IEEE Journal of Solid-State Circuits, vol.48, no.2, pp. 611-623, Feb. 2013.
[81] K. Roy, S. Mukhopadhyay and H. Mahmoodi-Meimand, “Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits,” Proc. IEEE, vol.91, pp. 305-327, Feb. 2003.
[82] C.-C Chiang, “Low Voltage and High Speed NAND-type ROM,” M.S. thesis, E.E, NTHU, Hsinchu, Taiwan, Oct. 2009.